
Password Policy Simulation and Analysis

Richard J. K. Shay
Purdue University
West Lafayette, IN

rshay@cs.purdue.edu

Abhilasha
Bhargav-Spantzel

CERIAS
Purdue University
West Lafayette, IN

bhargav@cs.purdue.edu

Elisa Bertino
Purdue University
West Lafayette, IN

bertino@cs.purdue.edu

ABSTRACT
Passwords are an ubiquitous and critical component of many secu-
rity systems. As the information and access guarded by passwords
become more necessary, we become ever more dependent upon the
security passwords provide. The creation and management of pass-
words is crucial, and for this we must develop and deploy password
policies. This paper focuses on defining and modeling password
policies for the entire password policy lifecycle. The paper first
discusses a language for specifying password policies. Then, a
simulation model is presented with a comprehensive set of vari-
ables and the algorithm for simulating a password policy and its
impact. Finally, the paper presents several simulation results using
the password policy simulation tool.

Categories and Subject Descriptors: K.6.5 Computing Milieux-
Management of Computing and Information Systems[Security and
protection]

General Terms: Management, Security, Standardization

Keywords: Password, Policy, Management, Modeling, Simulation

1. INTRODUCTION
The ubiquity of passwords is a fact of the present age. Authenti-

cation is usually executed by using the combination of a user name
and password [12]. Thus, passwords are frequently the sole barrier
between a potential attacker and a victim’s information. Knowing a
person’s password allows an attacker to impersonate that person in
an online setting, or access sensitive data intended only for that per-
son. As society becomes increasingly dependent on passwords for
security, it also becomes vulnerable to those passwords becoming
compromised.

Previous work has shown that users, given the option, tend to
create simple passwords [13, 8, 3]. However, simple passwords are
especially vulnerable to attackers [13, 12]. Therefore, many groups
and organizations develop password policies which impose restric-
tions on the passwords a user may make, and how those passwords
are used. A well-written policy may increase an organization’s se-
curity [5, 8, 12, 2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIM’07, November 2, 2007, Fairfax, Virginia, USA.
Copyright 2007 ACM 978-1-59593-889-3/07/0011 ...$5.00.

A large portion of password policies is usually related to the cre-
ation of passwords. For example, a password creation policy may
require that passwords be at least six characters long and contain
at least one numeric character. There are, however, several other
facets in a password lifecycle for which password policies are rele-
vant.

In the design of a password policy, it is crucial that human fac-
tors be considered in addition to technical factors. While a pass-
word policy may specify the encryption to be used on the password,
an overly complex password may be written down on paper by its
users because they fail to memorize it [8]. Likewise, many pass-
word policies specify with whom a user may share passwords, and
under what circumstances an administrator is to be contacted.

Password policy creation today appears to be more guesswork
and heuristic than science or calculation. There are many organiza-
tions using passwords for security, but no widely-accepted unified
context under which all of those password policies may be under-
stood and compared. Such a unified context would enable both the
creation of better password policies and a better understanding of
password policies. The goal of this paper is to introduce such a con-
text through a password policy language and model, and to present
experimental results derived from a simulation of that model.

The primary contributions of this paper are a password policy
lifecycle, a password policy language, a simulation model for pass-
word policies, and a set of experimental results from that simulation
model. The password lifecycle discussion in this paper provides a
framework in which password policies may be better understood;
by studying the situations in which password policy use arises, we
can better understand the vital role password policies play in the
security of an organization. The availability of a language for pass-
word policies may help in more precisely considering, describing,
and differentiating password policies. The password policy simu-
lation model, and the password policy simulation implementation,
offer a tool to assist in a more rigorous approach to password pol-
icy creation. An administrator wishing to create a new policy may
use the simulation to compare different potential password policies
before actually issuing a policy. Because the simulator uses a large
number of factors, including both technical and human factors, the
simulation tool is able to fit many different organizational struc-
tures with differing assumptions about users. Beyond being used
to assist in the creation of specific password policies, this simulator
also provides a utility for comparing how different factors impact
the effectiveness of passwords. analyze and implement password
policies.

The rest of this paper is organized as follows. Section 2 presents
the password lifecycle and a comprehensive language to describe
password policies. Section 3 then presents the data used in the
password policy simulation model. The simulation algorithm is



elaborated upon in Section 4. In Section 5, we describe an imple-
mentation of the simulation model and report some experimental
results. This is followed by a discussion on the limitations of the
simulation model in Section 6. In Section 7 the related works are
discussed. Finally, in Section 8 we present some conclusions.

2. PASSWORD LIFECYCLE AND POLICIES
In this section we first introduce a reference password lifecycle

and then formally define a language to express the password poli-
cies relevant at every stage of this lifecycle.

2.1 Password Lifecycle
The lifecycle of a password is organized into four stages: cre-

ation, storage and memorization, usage, and deletion. One or more
of these stages may be influenced by a password policy. A pass-
word policy is a set of rules regarding the creation, use, and dele-
tion of a password. In what follows we describe each stage of the
password lifecycle and examples of password policies which may
be relevant to that stage.

Password Creation. A password is created in accordance with
the stipulations of a password policy. Such policy often ensures
that the password is complex enough to present an obstacle to po-
tential attackers. The policy of the University of Massachusetts at
Amherst, for example, requires that a password have certain num-
bers of letters, numbers, and non-alphanumeric symbols [11]. The
policy also sets the minimum password length to six characters, and
the maximum length to eight.

Password Storage and Memorization. Once a password has
been created, it must be memorized or otherwise stored by the user.
The computer system must also retain the password to be able to au-
thenticate the user. As an example, a password policy could require
that all Unix passwords stored on a server be hashed in a particular
type of database. The Boston University password policy is explicit
about passwords needing to be stored encrypted. “Passwords must
never be contained in a non-encrypted form on the system, even in
a protected file . . . Whenever possible, encrypted passwords should
be kept in a protected file [9]”. There could also be policies which
restrict the user from storing passwords in a particular manner. For
example, the Brown University password policy explicitly prohibits
users from writing down their passwords [10].

Password Use. A password policy may provide users with in-
structions regarding the handling of a password which has already
been created and memorized. For example, the Brown Univer-
sity password policy asks users to email their passwords only with
administrative permission [10]. Brown University policy also re-
quires that the users’ passwords be encrypted when being trans-
mitted. Another related policy relevant to many institutions is a
restriction on the sharing of passwords.

Password Deletion. The final stage in the password lifecycle
is deletion; this stage may also be influenced by password policy.
Deletion results in the password becoming unusable. Passwords
may be deleted for one of two reasons – expiration or revocation.
Many password policies limit the temporal duration of a password.
A password which has exceeded this limit is said to have expired.
The password policy of Pennsylvania State University, for exam-
ple, makes passwords expire after one year. Passwords may be
revoked when the user or administrator believes the password has
been compromised. For example, the Brown University password
policy asks users to request new passwords if they suspect their
passwords are compromised [10].

2.2 Password Policy Language

In this section we discuss the formal language for the specifica-
tion of password policies. We derive the password policy language
from a generic authentication policy language [7]. We begin by
introducing the notation and symbols to be used for policy specifi-
cation and then illustrate the syntax of the language.

2.2.1 Preliminary Notion
Constant Symbols.

All users (U ) is the universal set of all possible users.
Users (U ⊆ U ) is the set of users registered to the system.
Passwords (P) denotes the set of passwords in the system. Each
password is associated with a user.
Storage (S) is the set of types of storage available in the system to
store passwords. The type of storage determines how stored pass-
words are encoded.
Verifier (V) is the set of verifiers whose responsibilities may in-
clude issuing, establishing, and verifying passwords in the system.
Time (T) is the discrete time in the system.
Natural Numbers (N).

Variable and Term Symbols. Variable symbols correspond-
ing to the above constant symbols are denoted by VU , VU VP , VS ,
VV , VT, and VN respectively. The variable symbols are placehold-
ers in policy statements for their corresponding types of constant
symbols.

The set of user terms, denoted by UT , is equal to the set VU∪U∪
VU ∪U . Similarly, we have password terms PT , storage terms ST ,
verifying parties terms VT , terms denoting time TT , and number
terms NT .

Assertion Symbols. The assertions we provide are divided into
three distinct sets. System state assertions (SA) determine the sys-
tem configuration factors involved in password use. Specifications
of password characteristics (PC) qualify the passwords in the sys-
tem. Specifications of user characteristics (UC) qualify the user
behavior in the system.

2.2.2 Formal Definitions
Password policies are key elements in decisions made at each

step of the password lifecycle. The specification of password poli-
cies rely on the notion of password policy factors. Password policy
factors define the conditions satisfied at each stage of the password
lifecycle. Password policy factors are described in terms of de-
scriptors [7] which are instantiations of various assertions relevant
to password management.

DEFINITION 2.1. (Descriptor) A descriptor d is a predicate of
the form p(x, t), in which x is a variable, and t is a vector of one
or more terms.

Properties of a specific password policy may be described in
multiple ways. In our language, we represent them through a finite
set of descriptors to enable the specification of expressive password
policies1. The arguments of the descriptors are typically simple
terms from PT , ST , UT , NT , and TT . Relevant descriptors nec-
essary to express articulated policy conditions are listed in Table 1.
Password policy factors are specified through a Boolean conjunc-
tion of descriptors. A formal definition is given as follows.

DEFINITION 2.2. (Password policy factor) A password policy
factor is a Boolean conjunction of descriptors d1, . . . , dk, each of
the form d = p(x, t), satisfying the following condition: the same
1We limit ourselves to the listed descriptors because we iden-
tify them as significant for expressing policy language without
an overly-complex grammar. Additional descriptors may be en-
visioned in an extended version of the current language.



Type Descriptor Arity Argument Types Meaning
SA sys_NumUsr 2 PT,NT If sys_NumUsr(p, n) is true, then the system where password p is stored

has n users
SA sys_Harm 3 PT,NT,TT If sys_Harm(p, x, t) is true, then at time t for the system where password

p is stored, the system harm is x
SA sys_NumAttacks 2 PT,NT If sys_NumAttacks(p, y) is true, then the system where password p is

stored has on an average y number of attacks per discrete time unit.
PC pass_Entropy 2 PT,NT If pass_Entropy(p, e) is true, then the average per-character entropy of the

given password p is e.
PC pass_expT ime 2 PT,TT If pass_expT ime(p, t) is true, then password p expires after t discrete time

units.
PC pass_creaT ime 2 PT,TT If pass_creaT ime(p, t) is true, then time when password p was created is

t; t is measured in discrete time units.
PC pass_length 2 PT,NT If pass_length(p, n) is true, then the given password p has a length of n

characters.
PC pass_store 2 PT,ST If pass_store(p, s) is true, then the given password p is stored in storage

type s.
UC user_forgetfulness 2 UT,NT If user_forgetfulness(u, m) is true, then user u has forgetfulness level

m. m is a real-value probability representing how likely user u is to be
unable to remember a seven-digit number when first given that number.

UC user_isMalicious 2 UT,NT If user_isMalicious(u, mal) is true, then the given user u is assumed to
be malicious if and only if mal has a value of true.

UC user_isCompromised2 UT,NT If user_isCompromised(u, com) is true, then user u is compromised if
and only if com has a value of true. A user u is compromised when there is
a malicious agent who knows the password of u.

Table 1: Password Policy Descriptors

factor variable x appears in every descriptor dm = p(x, tm) ∀m ∈
[1, k].

As from Definition 2.2, password policy factors can be defined
using any possible combination of descriptors.

EXAMPLE 1. Examples of password policy factors are the fol-
lowing:
1) pass_Entropy(p, .6)∧ pass_length(p, 6) ∧
pass_expT ime(p,“30 days”),
2) sys_NumUsr(p, 42)∧pass_store(p, s(“written”,“cleartext”))

The password policy factors, as defined, are independent in that
the specification of one single factor is not related to that of any
other factor. We formalize the concept of password policy with
respect to the password lifecycle as follows.

DEFINITION 2.3. (Password Policy) A password policy p is a
tuple of the form
〈[f1, . . . , fk], T s〉, k ≥ 1, where:

• [f1, . . . , fk] is a list of password policy factors, such that
fj 6= fm if j 6= m

• Ts denotes the number of mandatory password policy factors
to be verified; thus 1 ≤ Ts ≤ k.

A password policy is in part specified by a combination of factors
to be evaluated. The verification of all the factors may or may not
all be mandatory, as specified by threshold value, denoted by Ts.

EXAMPLE 2. The following is an example of a password pol-
icy:
p = 〈[f1, f2], 2〉 states that the password policy should enforce
both factors f1 and f2. Here, f1 and f2 correspond to the factors
in Example 1.

The specification of the mandatory number of factors enhance
the flexibility and expressive power of the policy language.

3. SIMULATION MODEL DATA
This section defines a simulation model which can be expressed

based on the above-defined password policy language. This model
simulates a computer system which can have multiple password
policies. The simulation model, and the simulation itself, serve
two purposes. First, they enable different password policies to be
examined, as is done in Section 5. Second, the simulation provides
a utility for network administrators and others responsible for pass-
word policy creation. The simulator enables new password policies
to be tested by simulation before being deployed in practice.

The simulation model is divided into two parts: the model vari-
ables and the model algorithm. This is illustrated in Figure 1. This
section describes and explains the model variables. The next sec-
tion in this paper, Section 4, describes the algorithm in which those
variables are used. Most variables in the password policy language
are mapped to configuration variables in the simulation model. The
simulation models a single system, its users, and the password poli-
cies.

Model variables are divided into four types: system variables,
password variables, user description variables, and simulation ter-
mination variables. Some of the variables are set by the entity run-
ning the simulation, to whom we refer as the administrator; while
the others are derived by the simulation algorithm specified in Sec-
tion 4. The administrator specifies the password variables and the
simulation termination variables. These do not change during the
simulation. The password variables specify details of the password
policies and the simulation termination variables specify the condi-
tions under which the simulation should terminate.

The simulation derives both the individual user and system vari-
ables from its policies. An example of a user variable is a Boolean
variable indicating whether one particular user is compromised or
not. Similarly, the amount of harm done to the system by malicious
users is represented as a system variable. These values may change
during the simulation. Table 2 describes all of the variables in the
simulation, their type, and the password policy language assertions
from which they are derived.



Figure 1: The password policy model and data

3.1 Password Policy Variables
A password policy in the system can be described by the pass-

word policy language presented in Section 2.2. Each of these vari-
ables must be set by the administrator prior to the start of the sim-
ulation.
A system policy is defined as follows: Π = {forget, potHarm,
isMalicious, numAttacks, compWritten, numUsr, passExpire,
passLength, passEntropy}
Multiple password policies may coexist within a system.

3.1.1 Password Creation and Deletion
numUsr is the number of individual computer system users

who follow password policy UserPolicy . passExpire is the num-
ber of days after which a password is to be changed; after a pass-
word has existed for passExpire days, it expires. passLength is
the minimum length of a password, in characters. passEntropy is
the minimum per-character entropy required of a password.

Section 7 indicates that increased complexity in passwords can
lead to better security for those passwords. Following the work of
Shannon [6], this model uses the concept of entropy to represent
complexity in text. More specifically, passEntropy is a decimal
number representing the average number of bits required to repre-
sent each character in a password of policy UserPolicy .

3.1.2 Human Memory and Password Storage
Limitations of human memory can lead users to select simple

passwords over more secure options [2]. The model deals with a
very specific case of the storage types that can be described with
the pass_store password policy descriptor. The model represents
limited human memory capacity in how a password is stored: a
user who has not yet memorized his or her password is assumed to
write down that password near his or her computer.

Some users may be better at memorizing passwords than oth-
ers. A user’s ability to memorize a password is a function of three
variables: the password length passLength, the password per-
letter entropy passEntropy, and the user’s forgetfulness forget.
forget is a decimal value between 0.0 and 1.0 which is the prob-
ability that a user is unable to memorize a password composed of

seven digits. Having the administrator enter a user’s memory in this
way has two advantages. First, it lets a user’s ability to memorize
a password vary with the complexity of that password. Second, it
gives the administrator an intuitive way to think about user mem-
ory; seven digits is a local telephone number, so the value may be
considered how likely a user is to forget a local phone number when
first hearing that number.

3.1.3 System Harm and Compromised Users
This model represents the harm done to the computer system

by all sources as a single integral value Σharm. While the above-
mentioned variables exist for each user or for each policy, a single
instance of the Σharm variable exists for the entire simulation. This
representation of total system harm as an integer is a general solu-
tion which makes no underlying assumptions about the computer
system itself. This concept facilitates quick and clear comparison
between two different password policies.

Individual password policy variables, set by the person using the
simulation, contribute to the final value of Σharm. In any system
some users being compromised may be more harmful to the system
than others. This is represented by the policy variable potHarm;
the higher the value of potHarm, the greater the damage dealt to
the system by a compromised user of that policy. If an individ-
ual user U ends a day compromised then the value of potHarm
specified by that user’s password policy UserPolicy is added to the
present value of Σharm.

There are three ways in which a user may become compromised:
the user may be malicious and therefore always be considered com-
promised, the user’s password may be guessed in an attack, or the
user may be compromised because his or her password is written
down. A compromised user is a user whose password is known
by a malicious agent. Therefore, a malicious user is always con-
sidered compromised. A user may become compromised as the
result of an attack against that user’s password; each user is subject
to numAttacks attacks per day of the simulation, as described in
Section 4. Should a user not remember his or her password, that
user writes the password down, leading to an additional daily prob-
ability of becoming compromised, as set by compWritten. A



Variable Name Type Admin-
Specified?

Matching Language As-
sertion

Description

Π Policy Yes NONE A Password Policy
forget Policy Yes user_forgetfulness User forgetfulness
potHarm Policy Yes sys_Harm Potential system harm
isMalicious Policy Yes user_isMalicious Is the user malicious?
numAttacks Policy Yes sys_NumAttacks Daily number of attacks against user
compWritten Policy Yes user_isCompromised Daily probability user compromised, if password written
numUsr Policy Yes sys_NumUsr Number of group members
passExpire Policy Yes pass_expTime Password Expiration
passLength Policy Yes pass_length Password length
passEntropy Policy Yes pass_Entropy Per-character password entropy
Ωdays Termination Yes NONE Simulation ends after this many days
Ωharm Termination Yes NONE Simulation ends after this much harm inflicted
Σharm System No NONE Total system harm in the simulation
Σdays System No T Number of days passed in the simulation
UserisWritten User No pass_store Is the user’s password written down?
UserisCompromised User No user_isCompromised Is the user compromised?
UserPolicy User No NONE User’s Password Policy, derived from the policies

Table 2: Model Variables — note that a separate instance of the Policy variables exists for each different password policy represnted
in the system

nonmalicious user who is compromised becomes uncompromised
when assigned a new password.

3.2 Simulation Variables
The current day of the simulation is Σdays. The administrator

sets at least one of two possible simulation termination variables
which set the conditions for the simulation to terminate. At least
one of these two variables, Ωdays and Ωharm, must be nonzero. If
Ωdays is nonzero, the simulation terminates once Ωdays days have
passed. If Ωharm is nonzero, the simulation terminates after the
day in which the total amount of system harm Σharm reaches or
exceeds the value of Ωharm.

3.3 Modeling System Users
Individual users are not specified directly by the administrator,

but instead are created and maintained by the simulation algorithm.
An individual user U is described as a set of three user attributes.
U = {UserisWritten, UserisCompromised, UserPolicy}
Each user has exactly one password policy to which it is bound.
Each user also has two Boolean variables. UserisCompromised is
a dynamic value which is either false or true; if true, then the
user is compromised. UserisWritten is a dynamic value which is
either false or true; if true, then the user has his or her password
written unencrypted.

4. SIMULATION MODEL ALGORITHM
The simulation model algorithm simulates the actions and events

of the computer system described by the variables listed in Sec-
tion 3. Each day in the simulation is divided into five sections.
First, users who need new passwords are assigned new passwords
and try to memorize them. Then, the users undergo a number of at-
tacks and may become compromised. Next, users who have not yet
memorized their passwords try to memorize them again. Fourth,
the simulation calculates the harm done to the system by compro-
mised users. Finally, the algorithm checks whether to continue the
simulation or not.

4.1 Memorizing a Password and Cracking a
Password

We assume that a user creates a password as long as the min-
imum required length, and with a per-character entropy equal to

the minimum required per-character entropy. Previous work, dis-
cussed in Section 7, indicates that users are often not vigilant about
password security [3, 8].

Each password in this model has a specific complexity derived
from the password policy under which it is created, specifically by
its length passLengthand its per-character entropy passEntropy.
A password created under a policy UserPolicy is uniquely deter-
mined by (passLength× passEntropy) bits. This value is used
in the model algorithm both in determining if a user memorizes a
password and in determining if a user is compromised by a brute
force attack.

forget is the probability that a given user of password policy
UserPolicy is unable to memorize a seven-digit number. The en-
tropy of a seven digit number is log2107 . The model assumes
that the ability of a user to memorize a set of characters grows and
shrinks proportionately with the total entropy of those characters.
This gives us the following equation:
Probability of failure to memorize 7−digit number

Complexity of 7−digit number
=

Probability of failure to memorize password
Complexity of password

This, in turn, gives us the following, in which P is the probability
of the user failing to memorize his or her password on the first try.
P = forget ∗passLength ∗passEntropy

7∗log210
Based on the equation, if either the value of forget for a user in-
creases, or the complexity of the user’s password increases, that
user becomes less likely to memorize a password on the first try.

A password is either memorized by its user or written down on a
piece of paper. Once a user has memorized a password, that user is
assumed never to forget it, and it is never written down. However,
if the user has not yet memorized his or her password, then that
user tries to memorize it again each day. The model assumes that
a user becomes more likely to memorize a password the longer he
or she uses it. Each user with a written password is subjected to an
additional daily probability of becoming compromised, as set by
compWritten. This represents the added danger a user encounters
when his or her password is written down on a piece of paper or
stored in some other insecure manner.

Increased password complexity makes it more difficult for an at-
tacker to guess a password through a brute force attack [8]. Each
password, as described above, is uniquely determined by (passLength
× passEntropy) bits. Our model assumes that a potential at-
tacker is aware of the number of bits needed to determine a partic-



ular password, but is unaware of what those bits are. Therefore, the
probability of a single brute force attack, or guess, by an attacker
succeeding is given by the following expression.
2−1 ∗ passLength ∗passEntropy

Each user is subject to a daily number of such attacks determined
by that user’s password policy, numAttacks.

4.2 The Model Algorithm
The password policy simulation algorithm is specified in Algo-

rithm 1.

Algorithm 1 Password Policy Simulation Algorithm
Require: Static model configuration variables set
1: Σdays ← 0
2: Σharm ← 0
3: for all user U do
4: if (Σdays= 0) OR (Σdays% passExpire= 0) then
5: if isMalicious= 1 then
6: UserisCompromised← 1
7: else
8: UserisCompromised← 0
9: end if

10: UATTEMPTS TO MEMORIZE PASSWORD
11: if U FAILS TO MEMORIZE then
12: UserisWritten← 1
13: else
14: UserisWritten← 0
15: end if
16: end if
17: for numAttacks do
18: if BRUTE FORCE ATTACK SUCCEEDS then
19: UserisCompromised← 1
20: end if
21: end for
22: if UserisWritten then
23: WITH PROBABILITY compWritten:

UserisCompromised← 1
24: end if
25: if UserisWritten then
26: for NUMBER OF DAYS PASSWORD HAS ALREADY

BEEN WRITTEN DOWN do
27: if U IS ABLE TO MEMORIZE PASSWORD then
28: UserisWritten← 0
29: end if
30: end for
31: end if
32: if UserisCompromised then
33: Σharm← Σharm+ potHarm
34: end if
35: end for
36: Σdays← Σdays+1
37: if (Σdays = Ωdays AND Ωdays 6= 0) OR (Σharm ≥ Ωharm

AND Ωharm 6= 0)) then
38: (STOP)
39: else
40: GOTO 3
41: end if

While the simulation is running, a number of metrics may be
recorded as its output. The duration of the simulation in days (final
value of Σdays) and the total damage to the system (final value of
Σharm) may be recorded. In addition, a number of metrics may be
recorded on a per-policy basis, as shown in Table 3.

Per-Policy Simulation Results
Number of passwords assigned
Number of times a user wrote down a password
How many times a user ended a day with written password
How many times a user ended a day compromised
System harm ( Σharm) done by users
Average number of new passwords assigned to a user
Average number of times a user wrote down a password
Average number of days a user ended with written password
Average number of days a user finished compromised
Average amount of system harm ( Σharm) done by a user
Percent of total system harm for which users are responsible

Table 3: Per-Policy Simulation Results

Password Policy Variable User
Memory

Password
Entropy

Password
Fre-
quency

passLengthi 5 8 5
forgeti variable .1 0.1
passEntropyi 3.0 variable 1.0
passExpirei 60 20 variable
potHarmi 1 1 1
isMaliciousi 0 0 0
numAttacksi 10 10 10
compWritteni 0.10 0.20 0.01
numUsri 100 100 1000

Table 4: Simulation Experiments’ Data Values

5. EXPERIMENTS AND RESULTS
In this section we first provide some information about the im-

plementation of the model; we then report results from three ex-
periments carried out using the simulator. The first experiment ex-
plores user memory, the second analyzes password entropy, and the
third studies password change frequency. The input to each experi-
ment may be found in Table 4. In order to elucidate the model and
its components, the first experiment is explained in rigorous detail.
The model is designed to be open-ended; the examples given here
are only three of many possible experiments.

5.1 Implementation
The password policy simulation model is implemented as a pro-

gram in Java version 1.5.0_06. The Java random number function
is used, with a random number seed provided by the user. A graph-
ical user interface allows the user to enter data and assists the user
in understanding the simulation results. The implementation runs
quickly. On a Windows XP machine with a 2.80GHz Pentium CPU
and 1.0 GB of RAM, all nine simulations used in the first experi-
ment took a total of only 3048 milliseconds to execute. Images
from the implementation may be found in the Appendix.

5.2 User Memory Experiment
This experiment deals with user memory and its impact on sys-

tem harm. It includes a careful explanation of the results to give the
reader a better understanding of the model. The simulation is run
nine different times for this experiment, each time with one policy
in the simulation. Let us call the nine different different policies
simulated π1 through π9. These nine password policies are identi-
cal except that they have different levels of forgetfulness.

Information which is the same for all πi may be found in Table 4
under “User Memory.” The nine different password policies differ
in their forgetfulness forget. For each πi, forgeti = i

10
. So,

for example, π3 has user forgetfulness of 0.3. In each of the nine
instances, the simulation is set to terminate after 365 days have
passed.



Figure 2: Comparison of Σharm versus forget.

The results for this experiment are found in Figure 2. In the
figure, each of the nine simulations is represented by a point on the
graph. The x − axis represents the forgetfulness of the users of
that particular policy; the further to the right the policy, the worse
its users memory. Likewise, the y − axis represents the amount
of harm done to the system by the users of the different password
policies; the higher a policy, the more system harm it inflicted. It is
clear that everything else being equal, users with a better memory
tend to inflict less harm to the computer system they use. This is
because a user with a better memory is less likely to write down his
or her password, and writing down a password can lead to a user
being compromised.

5.2.1 Model Explanation Variables
In order to demonstrate the algorithm employed by this model,

we focus on a specific simulation from the above-described exper-
iment. In particular, we consider one specific password policy, π3.
We consider a specific user in this group, to whom we refer as Plato
and describe his life in the simulation. Because Plato follows the
password policy π3, we know that Plato has certain values. These
are values derived from his password policy, and they never change
while the simulation is running. π3 has a total of 100 members, so
there are 99 other users who share this policy and its static values
with Plato.

Table 4 under “User Memory” gives us a number of facts about
Plato. Each password Plato creates has a length of 5 characters.
Each character in a password of Plato has an average entropy of
3. Plato must change his password every 60 days. At the end of
each day that Plato is compromised, he increases the total value of
system harm by 1. Plato is not a malicious user. Plato is subjected
to 10 random brute force attacks each day. Each day that Plato
ends with his password written down, there is an extra 10% chance
that he becomes compromised. We also know that Plato has a 70%
chance of memorizing a seven digit number when he first sees it,
and a 30% chance of failing to do so.

In addition to these static variables, Plato has two dynamic vari-
ables associated with him: UserisWritten and UserisCompromised.
UserisWritten is true when Plato has written down his password
and not disposed of it; for example, if he has his password written
on a scrap of paper by his computer. UserisCompromised is true
when and only when Plato is compromised. Plato is compromised
only when his current password has fallen into the hands of some
malicious person.

5.2.2 Getting a New Password

Plato has a passExpire value of 60, meaning that he is given a
new password every 60 days. In addition, he gets a new password
on the first day of the simulation. When Plato is given a new pass-
word, the first thing that happens is that he becomes not compro-
mised if he were compromised before; UserisCompromised takes
on a value of false. This is because any malicious agent who used
to know his old password does not know his new one.

When Plato gets his new password, the first thing that he does
is to try to memorize it. His password has a length of 5 charac-
ters, and each character has an entropy of 3.0. This means that
the new password of Plato has a total entropy, or complexity, of
5 ∗ 3.0 = 15.0. We know that the probability of Plato failing to
memorize a password of seven digits is equal to his forget value,
or 0.3. We also know that a password of seven digits has an entropy
equal to 7 ∗ log210, or 23.2535. Knowing both the complexity of
his password (15.0) and the probability that Plato fail to memorize
a seven-digit password (30%), we can calculate how likely Plato is
to fail to memorize his new password on the first attempt.
P = (0.3)∗(15.0)

23.2535
= 0.193519

Therefore, Plato has around a 19% chance of failing to memorize
his new password. If Plato memorizes his password, his value for
UserisWritten becomes false; otherwise, his value for UserisWritten

becomes true.

5.2.3 Attacks
After checking to see if he needs a new password, Plato is sub-

jected to a number of brute-force attacks. Plato is subjected to 10
brute-force attacks per day. Determining whether any of the 10 at-
tacks succeeds is function of his password’s total entropy, which is
15.0, the product of passEntropy and passLength. This means
that his password is uniquely determined by 15 bits. We assume
that an attacker knows that 15 bits determine the password, but
does not know which bits those are. We know that 15 bits have
a total of 215 possible different combinations; therefore each of the
ten brute force attacks has a probability to succeed of 1

215 . If any
of them do succeed, then Plato becomes compromised. Plato has
a compWritten value of 0.1. This means that each day Plato has
not yet memorized his password, he is subjected to an additional
10% chance of becoming compromised.

5.2.4 Trying Again to Memorize a Password
We have shown above that Plato has an 81% chance to memo-

rize his password on the first try, the day he receives it. If he does
not memorize it the first day, then every day after that Plato gets a
number of chances to memorize his password equal to the number
of days for which he has already had the password. So, suppose
that Plato gets a new password on Monday; he has an 81% chance
to memorize the password that day. Tuesday, Plato has another
81% chance to memorize his password. Failing to do so, his pass-
word remains written down and on the following day, Wednesday,
Plato has two chances to memorize his password, each with an
81% chance of success. If Plato memorizes his password in either
of the attempts, UserisWritten becomes false.

5.2.5 Ending the Day
In the case of Plato and his 99 fellow users of policy π3, the

value of potHarm is equal to 1. This means that each day which
ends with Plato being compromised increases the total system harm
value Σharm by exactly 1. Σharm starts as 0 and never decreases.
The final value of Σharm for π3 is 1906. This means that there are
1, 906 instances of users of policy π3 ending the day compromised;
on average, a user of policy π3 ends 19 days of the simulated year
compromised.



The last step in the simulated day is checking whether the simula-
tion continues or not. In this simulation, Ωharm is set to zero, so
the simulation does not end based on the value of Σharm. How-
ever, the simulation is set to end after 365 days. If 365 days have
not passed, then Plato begins his day again.

5.3 Password Entropy Experiment

5.3.1 Data and Results
This experiment involves ten different instances of a given pass-

word policy, π1.5, π2, π2.5, π3, π3.5, π4, π4.5, π5, π5.5, and π6.
These ten instances of password policies are identical except for
their different values for per-character password entropy passEntropy.
Information which is the same for all πi is found in Table 4 under
“Password Entropy.” The ten different password policies differ in
their per-letter entropy passEntropy. Specifically, for each πi,
passEntropyi = i.

For this experiment, the simulation is run ten times, once per pol-
icy. As described in the algorithm, the simulation is probabilistic;
the same random number seed is used in each of the ten simulation
runs. In each run, the simulation is set to terminate after 365 days
have passed; that is, Ωdays = 365.

Figure 3: Comparison of Σharm versus passEntropy.

5.3.2 Discussion
The results of the experiment are reported in Figure 3. The

x − axis corresponds to the per-character entropy passEntropy
of the policies. Because the ten policies are otherwise identical, a
policy with a higher value for passEntropy requires a more com-
plex password. The y − axis shows the total system harm Σharm

caused by the users of the different password policies. The graph
illustrates a certain tension in password policy design as noted by
[1, 2, 8, 12]. If password policy does not require a sufficiently com-
plex password, users are more vulnerable to their passwords being
cracked. However, if a password policy requires an overly complex
password, users may have difficulty remembering their passwords
consistently and may therefore write their passwords down. The
lowest system harm in the results is when the required complexity
is neither too little nor too great.

5.4 Password Change Frequency Experiment

5.4.1 Data and Results
This experiment involves examining nine different password poli-

cies. Each policy is the same except for the frequency with which
its passwords expire. Let these different password policies be π1

through π9. Each password policy πi has a value of passExpirei

such that its users must change passwords i times in the course of a
year. Thus π1 has passExpire1 equal to 365, π2 has passExpire2

equal to 182, and π9 has passExpire9 equal to 40.
Other than passExpire, all of the password policies share the

same values, as show in Table 4 under under “Password Frequency.”
The simulations are set to end after 365 days pass. The same ran-
dom number seed is used in each of the nine simulations.

Note that each user is subjected to only a 1% chance per day of
becoming compromised because of his or her password being writ-
ten down. Whereas, each day a user is subjected to ten attacks to
guess his or her password, each of which have a probability to suc-
ceed of 1

25 , or around 3%. Thus, in this environment, brute-force
attacks are more concerning than the threat of being compromised
by writing down one’s password.

Figure 4: Comparison of Σharm versus passExpire.

5.4.2 Discussion
The results of the experiment are reported in Figure 4. As with

the above experiment, the y − axis shows the total system harm
Σharm caused by the users of the different password policies. In
this experiment, however, the x − axis shows how many times
each year the password is changed. One can observe that in the
environment described by the variables, more frequent password
changes lead to a more secure computer system.

This experiment illustrates how the password policy simulation
model may be used to describe a specific environment, and is there-
fore adaptable to many different situations and organizations. The
environment presented here is one in which the primary threat to
a user being compromised arises from brute-force attacks on the
user, and not from the user writing down his or her password. In
other environments, the results may be different.

6. MODEL LIMITATIONS AND FUTURE WORK
Any simulation model entails some simplifications and assump-

tions, and the model presented in this paper is no exception. De-
spite being a fairly flexible model, there are some password policies
which may not be easily represented directly in the model. For ex-
ample, the model assumes that all users have a single password and
a single account. The model may be extended in the future to in-
clude a single user with multiple accounts but one password for all
of them, as is found in a system with single sign-on capability. It
could also include a single user with multiple passwords.

The model presented here also makes assumptions about user
behavior. It assumes that users always use the least complex pass-
word allowed by the policy; this assumption is supported by the



findings of [3] and [1]. It assumes that no two users share their
passwords with one another intentionally, and that non-malicious
users never divulge their password on purpose. This model assumes
that compromised, non-malicious users never discover when they
are compromised. In practice, many password policies such as that
of Brown University require that users who believe themselves to
be compromised contact an administrator [10]. In the model, a
password is only changed when it expires.

The memory of a user is represented by a single probability –
that of failing to memorize a seven digit number. The difficulty
of memorizing a password increases directly with the complexity
of that password. The model also assumes that a user becomes
increasingly capable of memorizing a given password over time.
Further, in our model, a user never contacts an administrator to ask
what his or her password is, because that user is assumed never
to forget a password once memorized. In many cases, there are
tools to automatically provide users with the password again, so the
administration costs will be very low. If however there are no such
tools or the users has to go in person - as in the case of very critical
accounts, the administrative costs may be very high. Therefore in
future versions of this model we will incorporate the administrative
costs of a user asking the administrator for a lost password.

Our model does not take into account administrative cost or how
burdensome a password policy may be for its users. A policy which
requires more frequent password changes can have a beneficial ef-
fect on system security, as shown in Figure 4. However, such
frequently issued passwords may be costly to the system admin-
istrators. Moreover, even if users are able to memorize the new
passwords, those users may still find the more frequently assigned
passwords onerous and have more trouble memorizing them. Fu-
ture work can extend the model to consider these factors.

This model simplifies all requirements a password policy may
make on the composition of a password into two variables, the min-
imum per-character entropy of the password and its length. The
length requirement is found directly in many actual policies, such
as those cited above. However, actual password policies do not
mandate a certain per-character complexity directly. Instead, they
tend to accomplish this by requiring certain configurations of differ-
ent character types, such as requiring that a password contain both
an upper-case and lower-case letter. All of these sorts of require-
ments are cast into a single metric in this model, the per-character
entropy passEntropy. This assumption allows us easily to com-
pare the requirements of one password policy with another. Com-
pared to an arbitrary list of text requirements, a decimal number is
easier for a person using the simulation to enter into the computer,
and easier for the model to utilize directly in its algorithm.

Finally, it would be insightful to measure how useful this model
and simulation are in practice. Future work may include giving the
simulation program to actual system administrators and seeing how
helpful it is to them. Further future work may involve comparing
the simulated results to those found in actual surveys among users.

7. RELATED WORK
Vu et al. conduct a study on various password policies [12]. They

measure the ability of users to generate passwords under different
policies and the effectiveness of these policies for creating more
secure passwords. Password restrictions the authors recommend
include a minimum length for the password, the use of special char-
acters to increase complexity, and avoiding simple and predictable
text patterns. The authors note that although a simple password is
easy to guess, randomly generated character strings are difficult to
remember and therefore more likely to be written down. While Vu
et al. conduct a study on actual users of password policy, our paper

presents a language and model through which password policies
may be better understood.

Summers et al. present an analysis of passwords and password
policies [8]. Passwords are frequently chosen poorly and password
policies often permit this. A password without sufficient complex-
ity is easy to crack, but a password which is too difficult to re-
member leads to a user writing it down. The authors recommend
that passwords be changed regularly, but point out potential prob-
lems with a user being forced to change passwords too frequently.
Similarly, our paper is concerned with the analysis of password pol-
icy. We incorporated the relation of the complexity of the password
with the memorability of the users into the model to determine the
optimal parameters in a password policy. Our experiments regard-
ing the frequency change of passwords also favor frequent changes.
However, as elaborated in Section 6, there exist additional concerns
like administrative costs that may lead to other difficulties when
passwords are changed too frequently.

Leyden conducts a survey on password use among office workers
[3]. This survey shows that users are often not cautious with their
password selection. 12% of the workers surveyed use the word
“password” as their password; 16% use their own name; 11% use
a sports team; and 8% use their birthday. Two-thirds of workers
surveyed share their password with a co-worker. This indicates
that users are unlikely to take the initiative to create secure pass-
words on their own. These findings justify our model assumption
that users select the most simple passwords possible. However, our
simulated users, unlike the actual users studied by Leyden, did not
share passwords with one another. We may investigate how to in-
corporate the shared passwords in the simulation as a part of future
work.

Adams and Sasse conduct a study on how users behave and what
they believe regarding password policies [4]. Through interviews,
they identify factors leading to more effective password usage. Many
users have difficulty memorizing multiple passwords at once. Other
users complain that requiring constant password changes leads to
writing down passwords and using more simple passwords. These
results suggest directions for future work in password policy mod-
eling.

A survey conducted by SafeNet examines password utilization
[1]. Half of the survey participants admit to writing down their
passwords. The survey advises that three factors can improve the
security of password policies: requiring longer passwords, increas-
ing the required complexity of passwords, and requiring more fre-
quent password changes. However, the survey also indicates that
each of these steps may have the undesired consequence of making
users more likely to write down a password. Surveys such as this
gather information about the present state of password use, while
our language and model provide a context in which policies may
be explored. The SafeNet survey indicates that there are flaws in
the present state of password use; where as our simulation model
provides administrators with a tool to improve password policy.

Kuo et al. explore generating complex passwords which remain
easy for the user to recall [2]. A good password, according to this
paper, is both memorable and difficult to guess. More complex
passwords can decrease the effectiveness of automatic password
cracking schemes. Dictionary attacks can be thwarted by using a
password which is not a commonly known word. Brute force pass-
word attacks rely on assumptions about which patterns of letters
are found together. They therefore may be countered by deviating
from the patterns the attacker expects. Our model notes the dif-
ficulty found in creating a password both easy to remember and
difficult to crack. However, in our model, a brute force attack is a
random guess which does not assume any patterns in the password.



8. CONCLUSION
The literature on password policy is in agreement on two state-

ments: that a well-crafted password policy is vital to the security
of an organization, and that an optimal policy is difficult to create.
Recognizing that password policy creation is an important yet dif-
ficult problem, this paper offers three related contributions which
will be useful in the creation and analysis of password policy. It
presents an extensible language to describe comprehensive pass-
word policies. It then presents a simulation model, consisting of
a set of variables and an algorithm, to simulate password policies
being used on a computer system. Further, the paper presents an ac-
tual password policy simulation program providing insight on the
effectiveness of such modeling.

The impact various factors have on password policy are studied
through experimentation. It is shown that user memory impacts
the security of computer systems. Moreover, it is shown that a
good password policy must find a balance between an overly sim-
ple password and a password that is too complex. Above all, the
open-ended password policy simulation model is shown to allow
administrators to define many different kinds password policies and
subsequently assess the effectiveness of those policies.

9. ACKNOWLEDGEMENT
The work reported in this paper has been partially supported by

the United States Department of Education through the Graduate
Assistance in Areas of National Need program and by the National
Science Foundation under the ITR Grant No. 0428554 “The Design
and Use of Digital Identities."

10. REFERENCES
[1] 2004 annual password survey results. SafeNet, 2005.
[2] Cynthia Kuo, Sasha Romanosky, and Lorrie Faith Cranor. Human selection of

mnemonic phrase-based passwords. In SOUPS ’06: Proceedings of the second
symposium on Usable privacy and security, pages 67–78, New York, NY,
USA, 2006. ACM Press.

[3] John Leyden. Office workers give away passwords for a cheap pen. The
Register, 2003.

[4] Anne Adams and Martina Angela Sasse. Users are not the enemy. Commun.
ACM, 42(12):40–46, 1999.

[5] III Robert M. Polstra. A case study on how to manage the theft of information.
In InfoSecCD ’05: Proceedings of the 2nd annual conference on Information
security curriculum development, pages 135–138, New York, NY, USA, 2005.
ACM Press.

[6] C. E. Shannon. Prediction and entropy of printed english. Bell Systems
Technical Journal, 30:50–64, 1951.

[7] Anna Squicciarini, Abhilasha Bhargav-Spantzel, Alexei Czeskis, and Elisa
Bertino. AuthSL: A System for the Specification and Enforcement of Quality
based Authentication Policies. In CERIAS Technical Report.

[8] Wayne C. Summers and Edward Bosworth. Password policy: the good, the
bad, and the ugly. In WISICT ’04: Proceedings of the winter international
synposium on Information and communication technologies, pages 1–6.
Trinity College Dublin, 2004.

[9] Boston University. Information security management guidelines.
http://www.bu.edu/computing/policies/infomanagement.html.

[10] Brown University. Brown university password policy.
http://www.brown.edu/Facilities/CIS/policy/password.html.

[11] Amherst University of Massachusetts. Netid and passwords.
http://www.oit.umass.edu/accounts/passwords.html.

[12] Kim-Phuong L. Vu, Robert W. Proctor, Abhilasha Bhargav-Spantzel,
Bik-Lam (Belin) Tai, and Joshua Cook. Improving password security and
memorability to protect personal and organizational information. International
Journal of Human-Computer Studies, 2007.

[13] Jianxin Jeff Yan. A note on proactive password checking. In NSPW ’01:
Proceedings of the 2001 workshop on New security paradigms, pages
127–135, New York, NY, USA, 2001. ACM Press.

APPENDIX
A. SIMULATION INTERFACE

The graphical user interface simplifies running the simulation
and guides the administrator through each step of the process. The
model itself is described in Section 3 and Section 4.

Figure 5: Policy specification interface

The administrator enters information about one or more pass-
word policies for the simulated computer system, as seen in Fig-
ure 5. After one or more password policies are entered, the admin-
istrator saves this data to disk for future use.

After the password policy data are entered, the simulation runs.
Then, the administrator may use the graphical interface to explore
the results. Section 4 describes a number of metrics which may be
considered the output of the simulation. These are displayed for
the administrator in the interface, as depicted in Figure 6. either the
global results of the simulation or the data for policy The simulation
results are saved to disk, and may be called up to be displayed by
the interface any time in the future.

Figure 6: Simulation results interface

The graphical interface facilitates using the model. It includes
a help tool which guides its user through each step, enabling the
model to be a practical utility for administrators seeking to create
or improve a password policy.


