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Abstract

Parameterized password guessability—how many
guesses a particular cracking algorithm with particular
training data would take to guess a password—has
become a common metric of password security. Unlike
statistical metrics, it aims to model real-world attackers
and to provide per-password strength estimates. We
investigate how cracking approaches often used by
researchers compare to real-world cracking by profes-
sionals, as well as how the choice of approach biases
research conclusions.

We find that semi-automated cracking by profession-
als outperforms popular fully automated approaches, but
can be approximated by combining multiple such ap-
proaches. These approaches are only effective, however,
with careful configuration and tuning; in commonly used
default configurations, they underestimate the real-world
guessability of passwords. We find that analyses of large
password sets are often robust to the algorithm used for
guessing as long as it is configured effectively. However,
cracking algorithms differ systematically in their effec-
tiveness guessing passwords with certain common fea-
tures (e.g., character substitutions). This has important
implications for analyzing the security of specific pass-
word characteristics or of individual passwords (e.g., in a
password meter or security audit). Our results highlight
the danger of relying only on a single cracking algorithm
as a measure of password strength and constitute the first
scientific evidence that automated guessing can often ap-
proximate guessing by professionals.

1 Introduction

Despite decades of research into alternative authen-
tication schemes, text passwords have comparative
advantages—familiarity, ease of implementation, noth-
ing for users to carry—that make a world without text
passwords unlikely in the near future [5]. Two-factor

authentication, single-sign-on systems, password man-
agers, and biometrics promise to obviate remembering a
distinct password for each online account, but passwords
will not disappear entirely.

Text passwords have been compromised with alarm-
ing regularity through both online and offline attacks.
While online attacks are mitigated through rate-limiting
password-entry attempts, faulty rate limiting contributed
to the iCloud photo leak [39]. In offline attacks, in-
cluding recent ones on LinkedIn [7], eHarmony [62],
Gawker [2], and Adobe [48], an attacker steals a database
of (usually) hashed passwords and tries to recover pass-
words through offline guessing. Because password reuse
is common [14], recovered passwords can often be used
to access accounts on other systems.

A key aspect of improving password security is mak-
ing passwords more computationally expensive to guess
during offline attacks. Cracking tools like the GPU-
based oclHashcat [57] and distributed cracking bot-
nets [13, 17] enable attackers to make 1014 guesses in
hours if passwords are hashed using fast hash func-
tions like MD5 or NTLM. These advances are offset by
the development of hash functions like bcrypt [52] and
scrypt [47], which make attacks more difficult by requir-
ing many iterations or consuming lots of memory.

Unfortunately, users often create predictable pass-
words [7, 29], which attackers can guess quickly even
if the passwords are protected by a computationally ex-
pensive hash function. In some cases, predictable pass-
words are a rational coping strategy [54, 60]; in other
cases, users are simply unsure whether a password is
secure [66]. System administrators encourage strong
passwords through password-composition policies and
password-strength meters. The design and effectiveness
of such mechanisms hinges on robust metrics to measure
how difficult passwords are to guess.

In recent years, traditional entropy metrics have fallen
out of favor because they do not reflect how easily a
password can be cracked in practice [3, 31, 69]. It has
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instead become common to measure password strength
by running or simulating a particular cracking algo-
rithm, parameterized by a set of training data [4, 31, 69].
This approach has two main advantages. First, it cal-
culates the guessability of each password individually,
enabling data-driven strength estimates during password
creation [10, 33]. Second, it estimates real-world secu-
rity against existing, rather than idealized, adversarial
techniques. A disadvantage of this approach is that the
(simulated) cracking algorithm may not be configured or
trained as effectively as by a real attacker, leading to in-
accurate estimates of password strength.

This paper reports on the first study of how vari-
ous cracking approaches used by researchers compare to
real-world cracking by professionals, as well as how the
choice of approach biases research conclusions. We con-
tracted a computer security firm specializing in password
recovery to crack a set of passwords chosen for their di-
versity in password-composition policies. We then com-
puted the guessability of these passwords using four pop-
ular approaches. We tested many configurations of two
well-known password-cracking toolkits: John the Rip-
per [49] and oclHashcat [57]. We also tested two ap-
proaches popular in academia: Weir et al.’s probabilis-
tic context-free grammar (PCFG) [70] and Ma et al.’s
Markov models [40].

Unsurprisingly, a professional attacker updating his
strategy dynamically during cracking outperformed fully
automated, “fire-and-forget” approaches (henceforth
simply referred to as automated), yet often only once bil-
lions or trillions of guesses had been made. We found
that relying on a single automated approach to calculate
guessability underestimates a password’s vulnerability to
an experienced attacker, but using the earliest each pass-
word is guessed by any automated approach provides a
realistic and conservative approximation.

We found that each approach was highly sensitive to
its configuration. Using more sophisticated configura-
tions than those traditionally used in academic research,
our comparative analysis produced far more nuanced re-
sults than prior work. These prior studies found that
Markov models substantially outperform the PCFG ap-
proach [18, 40], which in turn substantially outperforms
tools like John the Ripper [16, 69, 72]. We found that
while Markov was marginally more successful at first, it
was eventually surpassed by PCFG for passwords cre-
ated under typical requirements. Furthermore, the most
effective configurations of John the Ripper and Hash-
cat were frequently comparable to, and sometimes even
more effective than, the probabilistic approaches.

Both the differences across algorithms and the sensi-
tivity to configuration choices are particularly notable be-
cause most researchers use only a single approach as a
security metric [10, 12, 19, 42, 56, 65, 69]. In addition,

many researchers use adversarial cracking tools in their
default configuration [11, 14, 15, 20, 21, 28, 34, 71]. Such
a decision is understandable since each algorithm is very
resource- and time-intensive to configure and run. This
raises the question of whether considering only a single
approach biases research studies and security analyses.
For instance, would substituting a different cracking al-
gorithm change the conclusions of a study?

We investigate these concerns and find that for com-
parative analyses of large password sets (e.g., the ef-
fect of password-composition policies on guessability),
choosing one cracking algorithm can reasonably be ex-
pected to yield similar results as choosing another.

However, more fine-grained analyses—e.g., exam-
ining what characteristics make a password easy to
guess—prove very sensitive to the algorithm used. We
find that per-password guessability results often vary by
orders of magnitude, even when two approaches are sim-
ilarly effective against large password sets as a whole.
This has particular significance for efforts to help sys-
tem administrators ban weak passwords or provide cus-
tomized guidance during password creation [10, 33]. To
facilitate the analysis of password guessability across
many password-cracking approaches and to further sys-
tematize passwords research, we introduce a Password
Guessability Service [9] for researchers.

In summary, this paper makes the following main con-
tributions: We show that while running a single crack-
ing algorithm or tool relatively out-of-the-box produces
only a poor estimate of password guessability, using mul-
tiple well-configured algorithms or tools in parallel can
approximate passwords’ vulnerability to an expert, real-
world attacker. Furthermore, while comparative analy-
ses of large password sets may be able to rely on a single
cracking approach, any analysis of the strength of indi-
vidual passwords (e.g., a tool to reject weak ones) or the
security impact of particular characteristics (e.g., the use
of digits, multiple character classes, or character substi-
tutions) must consider many approaches in parallel.

2 Related Work

In this section, we discuss commonly used metrics of
password strength (Section 2.1) and describe popular cat-
egories of password-cracking attacks (Section 2.2).

2.1 Password Security Metrics

While estimated entropy was once a leading password
strength metric [8], it does not reflect what portion of a
set can be cracked easily [3, 31, 69]. Two main classes
of metrics have emerged in its place: statistical metrics
and parameterized metrics. Both classes focus on guess-
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ability, the number of guesses needed by an adversary to
guess a given password or a fraction of a set.

Statistical metrics are particularly valuable for exam-
ining password sets as a whole. For example, Bonneau
introduced partial guessing metrics [3] for estimating the
number of guesses required for an idealized attacker,
who can perfectly order guesses, to guess a given frac-
tion of a set. Since password distributions are heavy-
tailed, very large samples are required to determine a
set’s guessability accurately.

Parameterized metrics instead investigate guessability
under a cracking algorithm and training data [4, 31, 69].
These metrics thus model an adversary using existing
tools, rather than an idealized attack, though the metric is
only as good as the chosen algorithm and training data.
Parameterized metrics can also be used to compare pass-
word sets without fully running the algorithm [40].

In contrast to statistical metrics, parameterized met-
rics have two important properties. First, they estimate
the guessability of each password individually. Estimat-
ing guessability per-password is important for security
audits (e.g., identifying weak passwords) and to provide
feedback to a user about a password she has created. This
latter promises to become more widespread as proac-
tive feedback tools move from length-and-character-
class heuristics [15] to data-driven feedback [10, 33].
Second, parameterized metrics aim to estimate security
against real-world, rather than idealized, attacks. Re-
searchers previously assumed automated techniques ap-
proximate real-world attackers [31, 69]; we are the first
to test this assumption against attacks by professionals.

Parameterized metrics have been used to measure
password strength in a number of previous studies [10,
14, 16, 20, 21, 31, 34, 40, 42, 53, 56, 65, 68, 69, 72]. While
there are many different methods for cracking passwords,
as we detail in Section 2.2, time and resource constraints
lead many researchers to run only a single algorithm per
study. However, it remains an open question whether
this strategy accurately models real-world attackers, or
whether choosing a different algorithm would change a
study’s results. We address this issue.

Throughout the paper, we refer to the guess number of
a password, or how many guesses a particular parameter-
ized algorithm took to arrive at that password. Because
the algorithm must be run or simulated, there is neces-
sarily a guess cutoff, or maximum guess after which re-
maining passwords are denoted “not guessed.”

2.2 Types of Guessing Attacks

Researchers have long investigated how to guess pass-
words. A handful of studies [12, 16, 53] have compared
the aggregate results of running different cracking ap-
proaches. Other studies have compared results of run-

ning different cracking approaches based on guess num-
bers [11, 18, 40]. We are the first to examine in de-
tail the magnitude and causes of differences in these ap-
proaches’ effectiveness at guessing specific passwords;
we also compare approaches from academia and adver-
sarial tools to a professional attacker. In this section, we
highlight four major types of attacks.

Brute-force and mask attacks Brute-force attacks are
conceptually the simplest. They are also inefficient and
therefore used in practice only when targeting very short
or randomly generated, system-assigned passwords.

Mask attacks are directed brute-force attacks in which
password character-class structures, such as “seven
lowercase letters followed by one digit” are exhausted in
an attacker-defined order [58]. While this strategy may
make many guesses without success, mask attacks can be
effective for short passwords, as many users craft pass-
words matching popular structures [37, 63]. Real-world
attackers also turn to mask attacks after more efficient
methods exhaust their guesses. We evaluated mask at-
tacks in our initial tests. Unsurprisingly, we found them
significantly less efficient than other attacks we analyzed.

Probabilistic context-free grammar In 2009, Weir et
al. proposed using a probabilistic context-free grammar
(PCFG) with a large training set of passwords from ma-
jor password breaches [67] to model passwords and gen-
erate guesses [70]. They use training data to create a
context-free grammar in which non-terminals represent
contiguous strings of a single character class. From the
passwords observed in its training data, PCFG assigns
probabilities to both the structure of a password (e.g.,
monkey99 has the structure {six letters}{two digits}) and
the component strings (e.g., “99” will be added to the list
of two-digit strings it has seen). A number of research
studies [11, 16, 19, 31, 40, 42, 56, 65, 69, 72] have used
PCFG or a close variant to compute guessability.

Kelley et al. proposed other improvements to Weir et
al.’s PCFG algorithm, like treating uppercase and lower-
case letters separately and training with structures and
component strings from separate sources [31]. Because
they found these modifications improved guessing effec-
tiveness, we incorporate their improvements in our tests.
In addition, multiple groups of researchers have pro-
posed using grammatical structures and semantic tokens
as PCFG non-terminals [53, 68]. More recently, Koman-
duri proposed a series of PCFG improvements, including
supporting hybrid structures and assigning probabilities
to unseen terminals [32]. We incorporate his insights,
which he found improves guessing efficiency.
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Markov models Narayanan and Shmatikov first pro-
posed using a Markov model of letters in natural lan-
guage with finite automata representing password struc-
tures [45]. Castelluccia et al. used a similar algorithm for
password meters [10]. John the Ripper and Hashcat offer
simple Markov modes in their cracking toolkits as well.

Recently, Duermuth et al. [18] and Ma et al. [40] in-
dependently evaluated many variations of Markov mod-
els and types of smoothing in cracking passwords, using
large sets of leaked passwords for training. Both groups
compared their model with other probabilistic attacks,
including Weir et al.’s original PCFG code, finding par-
ticular configurations of a Markov model to be more ef-
ficient at guessing passwords for some datasets. We use
Ma et al.’s recommended model in our tests [40].

Mangled wordlist attacks Perhaps the most popular
strategy in real-world password cracking is the dictio-
nary attack. First proposed by Morris and Thompson
in 1979 [43], modern-day dictionary attacks often com-
bine wordlists with mangling rules, string transforma-
tions that modify wordlist entries to create additional
guesses. Wordlists usually contain both natural language
dictionaries and stolen password sets. Typical mangling
rules perform transformations like appending digits and
substituting characters [50, 59].

Many modern cracking tools, including John the Rip-
per [49], Hashcat [57], and PasswordsPro [30], support
these attacks, which we term mangled wordlist attacks.
The popularity of this category of attack is evident from
these tools’ wide use and success in password-cracking
competitions [36,51]. Furthermore, a number of research
papers have used John the Ripper, often with the default
mangling rules [11,14,15,20,21,28,34,71] or additional
mangling rules [16, 19, 72].

Expert password crackers, such as those offering
forensic password-recovery services, frequently perform
a variant of the mangled wordlist attack in which hu-
mans manually write, prioritize, and dynamically update
rules [23]. We term these manual updates to mangling
rules freestyle rules. As we discuss in Section 3, we
evaluate guessability using off-the-shelf tools relying on
publicly available wordlists and mangling rules. We also
contract a password recovery industry leader to do the
same using their proprietary wordlists and freestyle rules.

3 Methodology

We analyze four automated guessing algorithms and one
manual cracking approach (together, our five cracking
approaches). We first describe the password sets for
which we calculated guessability, then explain the train-
ing data we used. Afterwards, we discuss our five crack-

ing approaches. Finally, we discuss computational limi-
tations of our analyses.

3.1 Datasets

We examine 13,345 passwords from four sets created
under composition policies ranging from the typical
to the currently less common to understand the suc-
cess of password-guessing approaches against passwords
of different characteristics. Since no major password
leaks contain passwords created under strict composi-
tion policies, we leverage passwords that our group col-
lected for prior studies of password-composition poli-
cies [31, 42, 56]. This choice of data also enables us
to contract with a professional computer security firm
to crack these unfamiliar passwords. Had we used any
major password leak, their analysts would have already
been familiar with most or all of the passwords contained
in the leak, biasing results.

The passwords in these sets were collected using Ama-
zon’s Mechanical Turk crowdsourcing service. Two re-
cent studies have demonstrated that passwords collected
for research studies, while not perfect proxies for real
data, are in many ways very representative of real pass-
words from high-value accounts [20, 42].

Despite these claims, we were also curious how real
passwords would differ in our analyses from those col-
lected on Mechanical Turk. Therefore, we repeated our
analyses of Basic passwords (see below) with 15,000
plaintext passwords sampled from the RockYou gaming
site leak [67] and another 15,000 sampled from a Yahoo!
Voices leak [22]. As we detail in Appendix A.4, our Ba-
sic passwords and comparable passwords from these two
real leaks yielded approximately the same results.

Next, we detail our datasets, summarized in Table 1.
The Basic set comprises 3,062 passwords collected for a
research study requiring a minimum length of 8 charac-
ters [31]. As we discuss in Section 4, the vast majority
of 8-character passwords can be guessed using off-the-
shelf, automated approaches. Hence, we give particular
attention to longer and more complex passwords, which
will likely represent best practices moving forward.

System administrators commonly require passwords
to contain multiple character classes (lowercase letters,
uppercase letters, digits, and symbols). The Complex set
comprises passwords required to contain 8+ characters,
include all 4 character classes, and not be in a cracking
wordlist [46] after removing digits and symbols. They
were also collected for research [42].

Recent increases in hashing speeds have made pass-
words of length 8 or less increasingly susceptible to of-
fline guessing [24, 31]. We therefore examine 2,054
LongBasic passwords collected for research [31] that re-
quired a a minimum length of 16 characters. Finally, we
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Table 1: Characteristics of passwords per set, including
the percentage of characters that were lowercase (LC) or
uppercase (UC) letters, digits, or symbols (Sym).

Length % of Characters
Set # Mean (σ ) LC UC Digit Sym

Basic 3,062 9.6 (2.2) 68 4 26 1
Complex 3,000 10.7 (3.2) 51 14 25 11
LongBasic 2,054 18.1 (3.1) 73 4 20 2
LongComplex 990 13.8 (2.6) 57 12 22 8

examine 990 LongComplex passwords, also collected
for research [56], that needed to contain 12+ characters,
including characters from 3 or more character classes.

3.2 Training Data
To compare cracking approaches as directly as possible,
we used the same training data for each. That said, each
algorithm uses training data differently, making perfectly
equivalent comparisons impossible.

Our training data comprised leaked passwords and dic-
tionaries. The passwords were from breaches of MyS-
pace, RockYou, and Yahoo! (excluding the aforemen-
tioned 30,000 passwords analyzed in Appendix A.4).
Using leaked passwords raises ethical concerns. We be-
lieve our use of such sets in this research is justifiable
because the password sets are already available publicly
and we exclude personally identifiable information, such
as usernames. Furthermore, malicious agents use these
sets in attacks [23]; failure to consider them in our analy-
ses may give attackers an advantage over those who work
in defensive security.

Prior research has found including natural-language
dictionaries to work better than using just passwords [31,
69]. We used the dictionaries previously found most ef-
fective: all single words in the Google Web corpus [26],
the UNIX dictionary [1], and a 250,000-word inflec-
tion dictionary [55]. The combined set of passwords
and dictionaries contained 19.4 million unique entries.
For cracking approaches that take only a wordlist, with-
out frequency information, we ordered the wordlist by
descending frequency and removed duplicates. We in-
cluded frequency information for the other approaches.

3.3 Simulating Password Cracking
To investigate the degree to which research results can
be biased by the choice of cracking algorithm, as well
as how automated approaches compare to real attacks,
we investigated two cracking tools and two probabilistic
algorithms. We selected approaches based on their popu-
larity in the academic literature or the password-cracking
community, as well as their conceptual distinctness. We

also contracted a computer security firm specializing in
password cracking for the real-world attack.

Most cracking approaches do not natively provide
guess numbers, and instrumenting them to calculate
guessability was typically far from trivial. Because this
instrumentation enabled the comparisons in this paper
and can similarly support future research, we include
many details in this section about this instrumentation.
Furthermore, in Section 5, we introduce a Password
Guessability Service so that other researchers can lever-
age our instrumentation and computational resources.

For each approach, we analyze as many guesses
as computationally feasible, making 100 trillion (1014)
guesses for some approaches and ten billion (1010)
guesses for the most resource-intensive approach. With
the exception of Hashcat, as explained below, we filter
out guesses that do not comply with a password set’s
composition policy. For example, a LongComplex pass-
word’s guess number excludes guesses with under 12
characters or fewer than 3 character classes.

We define Minauto as the minimum guess number
(and therefore the most conservative security result)
for a given password across our automated cracking
approaches. This number approximates the best re-
searchers can expect with well-configured automation.

In the following subsections, we detail the configura-
tion (and terminology) of the five approaches we tested.
We ran CPU-based approaches (JTR, PCFG, Markov) on
a 64-core server. Each processor on this server was an
AMD Opteron 6274 running at 1.4Ghz. The machine
had 256 GB of RAM and 15 TB of disk. Its market value
is over $10,000, yet we still faced steep resource limita-
tions generating Markov guesses. We ran Hashcat (more
precisely, oclHashcat) on a machine with six AMD R9
270 GPUs, 2 GB of RAM, and a dual-core processor.

Probabilistic context-free grammar Weir et al.’s
probabilistic context-free grammar (termed PCFG) [70]
has been widely discussed in recent years. We use
Komanduri’s implementation of PCFG [32], which im-
proves upon the guessing efficiency of Weir et al.’s
work [70] by assigning letter strings probabilities based
on their frequency in the training data and assigning un-
seen strings a non-zero probability. This implementa-
tion is a newer version of Kelley et al.’s implementation
of PCFG as a lookup table for quickly computing guess
numbers, rather than enumerating guesses [31].

Based on our initial testing, discussed further in Sec-
tion 4.1, we prepend our training data, ordered by fre-
quency, before PCFG’s first guess to improve perfor-
mance. As a result, we do not use Komanduri’s hy-
brid structures [32], which serve a similar purpose. We
weight passwords 10× as heavily as dictionary entries.
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We were able to simulate 1012 guesses for Complex pass-
words and 1014 guesses for the other three sets.

Markov model Second, we evaluated the Markov-
model password guesser presented by Ma et al. [40],
which implemented a number of variants differing by or-
der and approaches to smoothing. We use the order-5
Markov-chain model, which they found most effective
for English-language test sets. We tried using both our
combined training data (dictionaries and paswords) us-
ing the same weighting as with PCFG, as well as only the
passwords from our training data. The combined training
data and passwords-only training data performed nearly
identically. We report only on the combined training
data, which was slightly more effective for Basic pass-
words and is most consistent with the other approaches.

We used Ma et al.’s code [40], which they shared with
us, to enumerate a list of guesses in descending proba-
bility. We used a separate program to remove guesses
that did not conform to the given password-composition
policy. Because this approach is extremely resource-
intensive, both conceptually (traversing a very large tree)
and in its current implementation, we were not able to
analyze as many guesses as for other approaches. As
with PCFG, we found prepending the training data im-
proved performance, albeit only marginally for Markov.
Therefore, we used this tweak. We simulated over 1010

guesses for Basic passwords, similar to Ma et al. [40].

John the Ripper We also tested variants of a man-
gled wordlist attack implemented in two popular soft-
ware tools. The first tool, John the Ripper (termed JTR),
has been used in a number of prior studies as a security
metric, as described in Section 2. In most cases, these
prior studies used JTR with its stock mangling rules.
However, pairing the stock rules with our 19.4-million-
word wordlist produced only 108 guesses for Basic pass-
words. To generate more guesses, we augment the stock
rules with 5,146 rules released for DEF CON’s “Crack
Me If You Can” (CMIYC) password-cracking contest in
2010 [35]. Specifically, we use Trustwave SpiderLabs’
reordering of these rules for guessing efficiency [64].
Our JTR tests therefore use the stock mangling rules fol-
lowed by the Spiderlabs rules. For completeness, Ap-
pendix A.2 presents these rules separately.

Instrumenting JTR to calculate precise guess numbers
was an involved process. We used john-1.7.9-jumbo

with the --stdout flag to output guesses to standard out.
We piped these guesses into a program we wrote to per-
form a regular expression check filtering out guesses that
do not conform to the given password policy. This pro-
gram then does a fast hash table lookup with GNU gperf

[27] to quickly evaluate whether a guess matches a pass-
word in our dataset. Using this method, we achieved a

throughput speed of 3 million guesses per second and
made more than 1013 guesses for Basic passwords.

Hashcat While Hashcat is conceptually similar to JTR,
we chose to also include it in our tests for two reasons.
First, we discovered in our testing that JTR and Hashcat
iterate through guesses in a very different order, leading
to significant differences in the efficacy of guessing spe-
cific passwords. JTR iterates through the entire wordlist
using one mangling rule before proceeding to the subse-
quent mangling rule. Hashcat, in contrast, iterates over
all mangling rules for the first wordlist entry before con-
tinuing to the subsequent wordlist entry.

Second, the GPU-based oclHashcat, which is often
used in practice [23, 24, 36, 51], does not permit users
to filter guesses that do not meet password-composition
requirements except for computationally expensive hash
functions. We accept this limitation both because it rep-
resents the actual behavior of a popular closed-source
tool and because, for fast hashes like MD5 or NTLM,
guessing without filtering cracks passwords faster in
practice than applying filtering.

Unlike JTR, Hashcat does not have a default set of
mangling rules, so we evaluated several. We generally
report on only the most effective set, but detail our tests
of four different rule sets in Appendix A.3. This most
effective rule set, which we term Hashcat throughout
the paper, resulted from our collaboration with a Hash-
cat user and password researcher from MWR InfoSecu-
rity [25, 44], who shared his mangling rules for the pur-
pose of this analysis. We believe such a configuration
represents a typical expert configuration of Hashcat.

We used oclHashcat-1.21. While, like JTR, Hash-
cat provides a debugging feature that streams guesses to
standard output, we found it extremely slow in practice
relative to Hashcat’s very efficient GPU implementation.
In support of this study, Hashcat’s developers generously
added a feature to oclHashcat to count how many guesses
it took to arrive at each password it cracked. This fea-
ture is activated using the flag --outfile-format=11

in oclHashcat-1.20 and above. We therefore hashed
the passwords in our datasets using the NTLM hash func-
tion, which was the fastest for Hashcat to guess in our
benchmarks. We then used Hashcat to actually crack
these passwords while counting guesses, with throughput
of roughly 10 billion guesses per second on our system.
We made more than 1013 guesses for Basic passwords,
along with nearly 1015 guesses for some alternate con-
figurations reported in Appendix A.3.

Professional cracker An open question in measur-
ing password guessability using off-the-shelf, automated
tools is how these attacks compare to an experienced,
real-world attacker. Such attackers manually customize
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and dynamically update their attacks based on a target
set’s characteristics and initial successful cracks.

To this end, we contracted an industry leader in profes-
sional password recovery services, KoreLogic (termed
Pros), to attack the password sets we study. We believe
KoreLogic is representative of expert password crackers
because they have organized the DEF CON “Crack Me If
You Can” password-cracking contest since 2010 [36] and
perform password-recovery services for many Fortune-
500 companies [38]. For this study, they instrumented
their distributed cracking infrastructure to count guesses.

Like most experienced crackers, the KoreLogic ana-
lysts used tools including JTR and Hashcat with propri-
etary wordlists, mangling rules, mask lists, and Markov
models optimized over 10 years of password audit-
ing. Similarly, they dynamically update their mangling
rules (termed freestyle rules) as additional passwords are
cracked. To unpack which aspects of a professional
attack (e.g., proprietary wordlists and mangling rules,
freestyle rules, etc.) give experienced crackers an advan-
tage, we first had KoreLogic attack a set of 4,239 Com-
plex passwords (distinct from those reported in our other
tests) in artificially limited configurations.

We then had the professionals attack the Complex,
LongBasic, and LongComplex passwords with no artifi-
cial limitations. An experienced password analyst wrote
freestyle rules for each set before cracking began, and
again after 1013 guesses based on the passwords guessed
to that point. They made more than 1014 guesses per set.

LongBasic and LongComplex approaches are rare in
corporate environments and thus relatively unfamiliar
to real-world attackers. To mitigate this unfamiliarity,
we randomly split each set in two and designated half
for training and half for testing. We provided analysts
with the training half (in plaintext) to familiarize them
with common patterns in these sets. Because we found
that automated approaches can already crack most Ba-
sic passwords, rendering them insecure, we chose not to
have the professionals attack Basic passwords.

3.4 Computational Limitations

As expected, the computational cost of generating
guesses in each approach proved a crucial limiting factor
in our tests. In three days, oclHashcat, the fastest of our
approaches, produced 1015 guesses using a single AMD
R9 290X GPU (roughly a $500 value). In contrast, the
Markov approach (our slowest) required three days on
a roughly $10,000 server (64 AMD Opteron 6274 CPU
cores and 256 GB of RAM) to generate 1010 guesses
without computing a single hash. In three days on the
same machine as Markov, PCFG simulated 1013 guesses.

The inefficiency of Markov stems partially from our
use of a research implementation. Even the most effi-

cient implementation, however, would still face substan-
tial conceptual barriers. Whereas Hashcat and JTR incur
the same performance cost generating the quadrillionth
guess as the first guess, Markov must maintain a tree of
substring probabilities. As more guesses are desired, the
tree must grow, increasing the cost of both storing and
traversing it. While Markov produced a high rate of suc-
cessful guesses per guess made (see Section 4.2), the cost
of generating guesses makes it a poor choice for comput-
ing guessability beyond billions of guesses.

Further, our automated approaches differ significantly
in how well they handle complex password-composition
policies. For PCFG, non-terminal structures can be
pruned before guessing starts, so only compliant pass-
words are ever generated. As a result, it takes about equal
time for PCFG to generate Basic passwords as Long-
Complex passwords. In contrast, Markov must first gen-
erate all passwords in a probability range and then fil-
ter out non-compliant passwords, adding additional over-
head per guess. JTR has a similar generate-then-filter
mechanism, while Hashcat (as discussed above) does not
allow this post-hoc filtering at all for fast hashes. This
means that Markov and JTR take much longer to gener-
ate valid LongComplex guesses than Basic guesses, and
Hashcat wastes guesses against the LongComplex set.

As a result of these factors, the largest guess is nec-
essarily unequal among approaches we test, and even
among test sets within each approach. To account for
this, we only compare approaches directly at equivalent
guess numbers. In addition, we argue that these compu-
tational limitations are important in practice, so our find-
ings can help researchers understand these approaches
and choose among them appropriately.

4 Results

We first show, in Section 4.1, that for each automated
guessing approach we evaluated, different seemingly
reasonable configurations produce very different crack-
ing results, and that out-of-the-box configurations com-
monly used by researchers substantially underestimate
password vulnerability.

Next, in Section 4.2, we examine the relative perfor-
mance of the four automated approaches. We find they
are similarly effective against Basic passwords. They
have far less success against the other password sets, and
their relative effectiveness also diverges.

For the three non-Basic sets, we also compare the
automated approaches to the professional attack. Pros
outperform the automated approaches, but only after a
large number of guesses. As Pros crack more pass-
words, their manual adjustments prove quite effective;
automated approaches lack this feedback mechanism.
We also find that, at least through 1014 guesses, auto-
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mated approaches can conservatively approximate hu-
man password-cracking experts, but only if a password
is counted as guessed when any of the four automated
approaches guesses it. A single approach is not enough.

In Section 4.3, we explore the degree to which differ-
ent cracking approaches overlap in which particular pass-
words they guess. While multiple approaches success-
fully guess most Basic passwords, many passwords in
the other classes are guessed only by a single approach.
We also find that different cracking approaches provide
systematically different results based on characteristics
like the number of character classes in a password.

In Section 4.4, we revisit how the choice of guessing
approach impacts research questions at a high level (e.g.,
how composition policies impact security) and lower
level (e.g., if a particular password is hard to guess).
While we find analyses on large, heterogeneous sets of
passwords to be fairly robust, security estimates for a
given password are very sensitive to the approach used.

4.1 The Importance of Configuration
We found that using any guessing approach naively per-
formed far more poorly, sometimes by more than an or-
der of magnitude, than more expert configurations.

Stock vs advanced configurations We experimented
with several configurations each for Hashcat and JTR, in-
cluding the default configurations they ship with, and ob-
served stark differences in performance. We detail a few
here; others are described in Appendices A.2 and A.3.

For example, Hashcat configured with the (default)
Best64 mangling rules guessed only about 2% of the
Complex passwords before running out of guesses. Us-
ing the mangling rules described in Section 3, it made far
more guesses, eventually cracking 30% (Figure 1).

Similarly, JTR guessed less than 3% of Complex pass-
words before exhausting its stock rules. The larger set of
rules described in Section 3 enabled it to guess 29% (see
Appendix A.2 for details). We found similar configura-
tion effects for LongComplex passwords, and analogous
but milder effects for the Basic and LongBasic sets.

We also compared the PCFG implementation we use
throughout the paper [32] with our approximation of the
originally published algorithm [70], which differs in how
probabilities are assigned (see Section 3). As we detail
in Appendix A.1, the newer PCFG consistently outper-
forms the original algorithm; the details of the same con-
ceptual approach greatly impact guessability analyses.

Choices of training data The performance of PCFG
and Markov depends heavily on the quality of training
data. Our group previously found that training with
closely related passwords improves performance [31].
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Figure 1: Results of Hashcat configured using the same
wordlist, but different sets of mangling rules (described
in Appendix A.3), to guess Complex passwords.

For our non-basic password sets, however, closely
matched data is not available in publicly leaked sets.

In tests reported in Appendix A.1, we thus incorpo-
rated closely matched data via cross-validation, in which
we iteratively split the test set into training and testing
portions. Using cross-validation improved guessing effi-
ciency for three of the four password sets, most dramati-
cally for LongBasic. This result demonstrates that an al-
gorithm trained with generic training data will miss pass-
words that are vulnerable to an attacker who has training
data that closely matches a target set. To minimize differ-
ences across approaches, however, PCFG results in the
body of the paper use generic training data only.

Actionable takeaways Together, these results suggest
that a researcher must carefully manage guessing config-
uration before calculating password guessability. In par-
ticular, tools like JTR and Hashcat will “out of the box”
systematically underestimate password guessability. Un-
fortunately, many existing research studies rely on unop-
timized configurations [11, 14, 15, 20, 21, 28, 34, 71].

While we report on the configurations we found most
effective in extensive testing, we argue that the research
community should establish configuration best practices,
which may depend on the password sets targeted.

4.2 Comparison of Guessing Approaches
We first show that automated approaches differ in effec-
tiveness based on the nature of the password sets be-
ing cracked and the number of guesses at which they
are compared. We then compare these automated ap-
proaches to cracking by an expert attacker making dy-
namic updates, finding that the expert lags in initial
guessing efficiency, yet becomes stronger over time. We
find the minimum guess number across automated ap-
proaches can serve as a conservative proxy for guessabil-
ity by an expert attacker.
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4.2.1 Guessing by Automated Approaches

On some password sets and for specific numbers of
guesses, the performance of all four approaches was sim-
ilar (e.g., at 1012 guesses all but Markov had guessed
60-70% of Basic passwords). In contrast, on other sets,
their performance was inconsistent at many points that
would be relevant for real-world cracking (e.g., PCFG
cracked 20% of Complex passwords by 1010 guesses,
while Hashcat and JTR had cracked under 3%).

As shown in Figure 2, all four automated approaches
were quite successful at guessing Basic passwords, the
most widely used of the four classes. Whereas past
work has found that, for password sets resembling our
Basic passwords, PCFG often guesses more passwords
than JTR [16] or that Markov performs significantly
better than PCFG [40], good configurations of JTR,
Markov, and PCFG performed somewhat similarly in our
tests. Hashcat was less efficient at generating successful
guesses in the millions and billions of guesses, yet it sur-
passed JTR by 1012 guesses and continued to generate
successful guesses beyond 1013 guesses.

The four automated approaches had far less success
guessing the other password sets. Figure 3 shows the
guessability of the Complex passwords under each ap-
proach. Within the first ten million guesses, very few
passwords were cracked by any approach. From that
point until its guess cutoff, PCFG performed best, at
points having guessed nearly ten times as many pass-
words as JTR. Although its initial guesses were often
successful, the conceptual and implementation-specific
performance issues we detailed in Section 3.4 prevented
Markov from making over 100 million valid Complex
guesses, orders of magnitude less than the other ap-
proaches we examined. A real attack using this algorithm
would be similarly constrained.

Both Hashcat and JTR performed poorly compared to
PCFG in early Complex guessing. By 109 guesses, each
had each guessed under 3% of Complex passwords, com-
pared to 20% for PCFG. Both Hashcat and JTR improve
rapidly after 1010 guesses, however, eventually guessing
around 30% of Complex passwords.

JTR required almost 1012 guesses and Hashcat re-
quired over 1013 guesses to crack 30% of Complex pass-
words. As we discuss in Section 4.3, there was less over-
lap in which passwords were guessed by multiple auto-
mated approaches for Complex passwords than for Basic
passwords. As a result, the Minauto curve in Figure 3,
representing the smallest guess number per password
across the automated approaches, shows that just under
1011 guesses are necessary for 30% of Complex pass-
words to have been guessed by at least one automated ap-
proach. Over 40% of Complex passwords were guessed
by at least one automated approach in 1013 guesses.
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Figure 2: Automated approaches’ success guessing Ba-
sic passwords. Minauto represents the smallest guess
number for a password by any automated approach.
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Figure 3: Success guessing Complex passwords. Pros
are experts updating their guessing strategy dynamically.
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Figure 4: Success guessing LongBasic passwords.
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Figure 5: Success guessing LongComplex passwords.
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Figure 6: The proportion of passwords guessed by
Minauto, Pros, both, or neither within 1014 guesses.

LongBasic passwords were also challenging for all
approaches to guess, though relative differences across
approaches are not as stark as for Complex passwords.
Markov was marginally more successful than other ap-
proaches at its cutoff just before 109 guesses. JTR and
PCFG both continued to generate successful guesses
through when JTR exhausted its guesses after guessing
10% of the passwords. Hashcat lagged slightly behind
JTR at 109 guesses (7% cracked vs ∼9%), but was able
to make more guesses than either, eventually guessing
over 20% of the passwords, compared to 16% for PCFG
and 10% for JTR at those approaches’ guess cutoffs.

As with LongBasic passwords, all approaches had dif-
ficulty guessing LongComplex passwords. As shown
in Figure 5, nearly 70% of LongComplex passwords
were not guessed by any of the approaches we exam-
ined even after trillions of guesses. The relative per-
formance of the four automated guessing approaches
for LongComplex passwords again differed noticeably.
Markov and PCFG again outperformed other approaches
early. Markov guessed 5% of the passwords after 108

guesses, yet reached its guess cutoff soon thereafter. At
109 guesses PCFG and JTR had both also guessed at least
5% of the passwords, compared to almost no passwords
guessed by Hashcat. PCFG’s and JTR’s performance
diverged and then converged at higher guess numbers.
Hashcat caught up at around 1013 guesses, cracking 20%
of LongComplex passwords.

4.2.2 Guessing by Pros

As we expected, Pros guessed more passwords overall
than any of the automated approaches. As we discussed
in Section 3, we chose not to have Pros attack Basic pass-
words because those passwords could be guessed with
automated approaches alone. As shown in Figures 3–5,
within 1014 guesses Pros cracked 44% of Complex pass-
words, 33% of LongBasic passwords, and 33% of Long-
Complex passwords, improving on the guessing of the
best automated approach.

Three aspects of guessing by Pros were particularly
notable. First, even though Pros manually examined
half of each password set and adjusted their mangling
rules and wordlists before making the first guess against
each set, automated approaches were often more suc-

cessful at early guessing. For example, Markov sur-
passed Pros at guessing Complex passwords in the first
102 guesses and again from around 106 till Markov’s
guess cutoff at 5 × 107. Similarly, all four automated
approaches guessed LongComplex passwords more suc-
cessfully than Pros from the start of guessing until past
1013 guesses. All approaches guessed LongBasic pass-
words better than Pros for the first 106 guesses.

Second, while Pros lagged in early guessing, the
freestyle rules an experienced analyst wrote at 1013

guesses proved rather effective and caused a large spike
in successful guesses for all three password sets. Hash-
cat, the only automated approach that surpassed 1013

guesses for all sets, remained effective past 1013 guesses,
yet did not experience nearly the same spike.

Third, while Pros were more successful across pass-
word sets once a sufficiently high number of guesses had
been reached, the automated approaches we tested had
guessing success that was, to a very rough approxima-
tion, surprisingly similar to Pros. As we discussed in
Section 4.1 and discuss further in the appendix, this suc-
cess required substantial configuration beyond each ap-
proach’s performance out of the box.

We found that our Minauto metric (the minimum guess
number for each password across Hashcat, JTR, Markov,
and PCFG) served as a conservative approximation of
the success of Pros, at least through our automated guess
cutoffs around 1013 guesses. As seen in Figures 3–6,
Pros never substantially exceeded Minauto, yet often per-
formed worse than Minauto.

Professional cracking with limitations To unpack
why professional crackers have an advantage over novice
attackers, we also had KoreLogic attack a different set of
Complex passwords in artificially limited configurations.
These limitations covered the wordlists they used, the
mangling rules they used, and whether they were permit-
ted to write freestyle rules. To avoid biasing subsequent
tests, we provided them a comparable set of 4,239 Com-
plex passwords [31] distinct from those examined in the
rest of the paper. We call this alternate set Complexpilot .

As shown in Table 2, we limited Pros in Trial 1 to
use the same wordlist we used elsewhere in this paper
and did not allow freestyle rules. In Trial 2, we did not
limit the wordlist, but did limit mangling rules to those
used in the 2010 Crack Me If You Can contest [35]. In
Trial 3 and Trial 4, we did not limit the starting wordlist
or mangling rules. In Trial 4, however, KoreLogic ana-
lysts dynamically adjusted their attacks through freestyle
rules and wordlist tweaks after 1014 guesses.

We found that KoreLogic’s set of proprietary man-
gling rules had a far greater impact on guessing effi-
ciency than their proprietary wordlist (Figure 7). Fur-
thermore, as evidenced by the difference between Trial 3
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Table 2: The four trials of Pros guessing Complexpilot .
We artificially limited the first three trials to uncover why
Pros have an advantage over more novice attackers.

Trial Wordlist Rules Freestyle Rules

1 CMU wordlist Anything None
2 Anything 2010 CMIYC rules None
3 Anything Anything None
4 Anything Anything Unlimited
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Figure 7: Complexpilot guessability by trial.

and Trial 4, freestyle rules also had a major impact at the
point the analyst wrote them.

Actionable takeaways One conceptual advantage of
parameterized metrics is that they model an attack using
existing cracking approaches. However, it has long been
unclear whether automated cracking approaches used by
researchers effectively model the dynamically updated
techniques used by expert real-world attackers. Our re-
sults demonstrate that only by considering multiple au-
tomated approaches in concert can researchers approxi-
mate professional password cracking.

One of our primary observations, both from compar-
ing Pros to the automated approaches and from our trials
artificially limiting Pros (Section 4.2.2), is that dynami-
cally updated freestyle rules can be highly effective. This
result raises the question of to what extent automated ap-
proaches can model dynamic updates. Although the ad-
versarial cracking community has discussed techniques
for automatically generating mangling rules from previ-
ous cracks [41], researchers have yet to leverage such
techniques, highlighting an area ripe for future work.

Contrary to prior research (e.g., [16, 40]), we found
that Hashcat, JTR, Markov, and PCFG all performed rel-
atively effectively when configured and trained accord-
ing to currently accepted best practices in the cracking
and research communities. That said, our tests also high-
lighted a limitation of the guessability metric in not con-
sidering the performance cost of generating a guess. De-
spite its real-world popularity, Hashcat performed com-
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LongBasic

Complex

Basic

3 approaches 2 approaches 1 approach

Figure 8: Number of automated approaches, excluding
Markov, that cracked a particular password. We ignore
passwords not guessed by any approach and use the same
guess cutoff for all guessing approaches within a set.

paratively poorly until making trillions of guesses, yet
generated guesses very quickly.

If hashing a guess is the dominant time factor, as
is the case for intentionally slow hash functions like
bcrypt, PBKDF2, and scrypt, probabilistic approaches
like Markov and PCFG are advantageous for an attacker.
For fast hash functions like MD5 or NTLM, Hashcat’s
speed at generating and hashing guesses results in more
passwords being guessed in the same wall-clock time. As
discussed in Section 3.4, Markov proved comparatively
very resource-intensive to run to a large guess number,
especially for password sets with complex requirements.
These practical considerations must play a role in how
researchers select the best approaches for their needs.

4.3 Differences Across Approaches
Next, we focus on differences between approaches. We
first examine if multiple approaches guess the same pass-
words. We then examine the guessability of passwords
with particular characteristics, such as those containing
multiple character classes or character substitutions. To
examine differences across how approaches model pass-
words, for analyses in this section we do not prepend the
training data to the guesses generated by the approach.

4.3.1 Overlap in Successful Guesses

While one would expect any two cracking approaches to
guess slightly different subsets of passwords, we found
larger-than-expected differences for three of the four
password sets. Figure 8 shows the proportion of pass-
words in each class guessed by all four approaches,
or only some subset of them. We exclude passwords
guessed by none of the automated approaches. Within a
password set, we examine all approaches only up to the
minimum guess cutoff among Hashcat, JTR, and PCFG;
we exclude Markov due to its low guess cutoffs.

The three approaches guessed many of the same Basic
passwords: Three-fourths of Basic passwords guessed by
any approach were guessed by all of them. Only 11%
of Basic passwords were guessed only by a single ap-
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Figure 9: Percentage of Basic passwords each approach
guessed, by character-class count.

proach. In contrast, only 6% of LongBasic passwords
were guessed by all approaches, while 28% of Complex,
LongBasic, and LongComplex passwords were guessed
only by a single approach.

4.3.2 Guessing Success by Password Characteristics

While it is unsurprising that different approaches do bet-
ter at guessing distinct types of passwords, we found dif-
ferences that were large and difficult to predict.

Character classes and length We first considered how
efficiently automated approaches guessed passwords rel-
ative to their length and character-class count. These two
characteristics are of particular interest because they are
frequently used in password-composition policies.

As shown in Figure 9, the impact of adding charac-
ter classes is not as straightforward as one might expect.
While the general trend is for passwords with more char-
acter classes to be stronger, the details vary. Markov ex-
periences a large drop in effectiveness with each increase
in character classes (63% to 52% to 23% to 8%). JTR, by
contrast, finds only a minor difference between one and
two classes (72% to 70%). PCFG actually increases in
effectiveness between one and two classes (78% to 86%).
Since changes in security and usability as a result of dif-
ferent policies are often incremental (e.g., [8]), the mag-
nitude of these disagreements can easily affect research
conclusions about the relative strength of passwords.

In contrast, we did not find surprising idiosyncrasies
based on the length of the password. For all approaches,
cracking efficiency decreased as length increased.

Character-level password characteristics As the re-
search community seeks to understand the characteristics
of good passwords, a researcher might investigate how
easy it is to guess all-digit passwords, which are com-
mon [6], or examine the effect of character substitutions
(e.g., $Hplovecraft!$ → $Hpl0v3cr@ft!$) on guessabil-
ity. Despite their sometimes similar effectiveness over-
all, approaches often diverged when guessing passwords
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Figure 10: Approaches’ effectiveness guessing pass-
words composed entirely of lowercase letters across sets.

that had these characteristics. As a result, researchers
using different approaches could draw different conclu-
sions about the guessability of these properties.

The guessability of the 1,490 passwords (across sets)
composed entirely of lowercase letters varied starkly by
guessing approach. This variation is particularly no-
table because such passwords made up 29% of Basic
and LongBasic passwords, and were impermissible un-
der the other two composition policies. As shown in Fig-
ure 10, Hashcat guessed few such passwords until well
into the billions of guesses, whereas Markov success-
fully guessed passwords composed entirely of lowercase
letters throughout its attack. In contrast, PCFG had a
large spike in successful guesses between 1 million and
10 million guesses, but then plateaued. JTR had early
success, but similarly plateaued from 10 million guesses
until into the trillions of guesses.

Similarly, approaches differed in their efficiency
guessing passwords containing character substitutions,
which we identified using crowdsourcing on Amazon’s
Mechanical Turk. Passwords identified by crowdworkers
as containing character substitutions included 4Everb-
lessed, B1cycle Race, and Ca$hmoneybr0. PCFG per-
formed poorly relative to JTR and Markov at guessing
passwords with character substitutions. A researcher us-
ing only PCFG could mistakenly believe these passwords
are much stronger than they actually are. We found simi-
lar differences with many other common characteristics,
potentially skewing research conclusions.

Actionable takeaways Given the many passwords
guessed by only a single cracking approach and the sys-
tematic differences in when passwords with certain char-
acteristics are guessed, we argue that researchers must
consider major cracking approaches in parallel.

Our results also show how comparative analyses un-
cover relative weaknesses of each approach. Upon close
examination, many of these behaviors make sense. For
example, PCFG abstracts passwords into structures of
non-terminal characters based on character class, ig-
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noring contextual information across these boundaries.
As a result, P@ssw0rd would be split into “P,” “@,”
“ssw,” “0,” and “rd,” explaining PCFG’s poor perfor-
mance guessing passwords with character substitutions.

4.4 Robustness of Analyses to Approach

In this section, we examine whether differences among
automated cracking approaches are likely to affect con-
clusions to two main types of research questions.

We first consider analyses of password sets, such
as passwords created under particular password-
composition policies. We find such analyses to be some-
what, but not completely, robust to the approach used.

In contrast, per-password analyses are very sensitive
to the guessing approach. Currently, such analyses are
mainly used in security audits [61] to detect weak pass-
words. In the future, however, per-password strength
metrics may be used to provide detailed feedback to users
during password creation, mirroring the recent trend of
data-driven password meters [10, 33]. The ability to cal-
culate a guess number per-password is a major advantage
of parameterized metrics over statistical metrics, yet this
advantage is lost if guess numbers change dramatically
when a different approach is used. Unfortunately, we
sometimes found huge differences across approaches.

4.4.1 Per Password Set

As an example of an analysis of large password sets, we
consider the relative guessability of passwords created
under different composition policies, as has been studied
by Shay et al. [56] and Kelley et al. [31].

Figure 11 shows the relative guessability of the three
password sets examined by the Pros. LongBasic pass-
words were most vulnerable, and LongComplex pass-
words least vulnerable, to early guessing (under 109

guesses). Between roughly 109 and 1012 guesses, Long-
Basic and Complex passwords followed similar curves,
though Complex passwords were cracked with higher
success past 1012 guesses. Very few LongComplex
passwords were guessed before 1013 guesses, yet Pros
quickly guessed about one-third of the LongComplex set
between 1013 and 1014 guesses.

Performing the same analysis using Minauto guess
numbers instead (Figure 12) would lead to similar con-
clusions. LongBasic passwords were again more vulner-
able than Complex or LongComplex under 108 guesses.
After 1012 guesses, Complex passwords were easier to
guess than LongBasic or LongComplex passwords. Ba-
sic passwords were easy to guess at all points. The main
difference between Minauto and Pros was that LongCom-
plex passwords appear more vulnerable to the first 1012

guesses under Minauto than Pros.
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Figure 11: Pros’ comparative success guessing each
password. For reference, the dotted line represents the
Minauto guess across automated approaches for Basic
passwords, which the Pros did not try to guess.
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Figure 12: The guessability of all four password sets un-
der Minauto, representing the smallest guess number for
each password across all four automated approaches.

Based on this data, a researcher comparing composi-
tion policies would likely reach similar conclusions us-
ing either professionals or a combination of automated
approaches. As shown in Figure 13, we repeated this
analysis using each of the four automated approaches in
isolation. Against every approach, Basic passwords are
easily guessable, and LongBasic passwords are compar-
atively vulnerable during early guessing. After trillions
of guesses, Hashcat, PCFG, and JTR find Long Com-
plex passwords more secure than Complex passwords.
In each case, a researcher would come to similar conclu-
sions about the relative strength of these password sets.

4.4.2 Per Individual Password

Analyses of the strength of individual passwords, in con-
trast, proved very sensitive to the guessing approach. Al-
though one would expect different approaches to guess
passwords at somewhat different times, many pass-
words’ guess numbers varied by orders of magnitude
across approaches. This state of affairs could cause a
very weak password to be misclassified as very strong.

We examined per-password differences pairwise
among JTR, Markov, and PCFG, using the same guess
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(a) Hashcat guessability.
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(b) JTR guessability.
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(c) Markov guessability.
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(d) PCFG guessability.

Figure 13: The relative guessability of the four different password sets under each of the four automated cracking
approaches considered in isolation. The research conclusions would be fairly similar in each case.

Figure 14: The % (log scale) of passwords guessed by
JTR or PCFG whose guess numbers differed by a given
order of magnitude. e.g., the blue > 6 bar represents
passwords guessed by JTR more than 6, but no more than
7, orders of magnitude more quickly than by PCFG.

cutoff for each approach in a pair. Because Hashcat’s
early guesses were often unsuccessful, we exclude it
from this analysis. Passwords not guessed by the guess
cutoff were assigned a guess number one past the cutoff,
lower-bounding differences between passwords guessed
by one approach but not the other. For each password, we
calculated the log10 of the ratio between guess numbers
in the two approaches. For example, iceman1232 was
guess 595,300,840 for JTR and 61,554,045 for Markov,
a 0.985 order of magnitude difference.

Among passwords guessed by JTR, PCFG, or both,
51% of passwords had guess numbers differing by more
than an order of magnitude between approaches, indi-
cating large variations in the resulting security conclu-
sions. Alarmingly, some passwords had guess numbers
differing by over 12 orders of magnitude (Figure 14).
For example, P@ssw0rd! took JTR only 801 Com-
plex guesses, yet PCFG never guessed it in our tests.
Similarly, 1q2w3e4r5t6y7u8i was the 29th LongBasic
JTR guess, yet it was not among the 1014 such guesses
PCFG made. In contrast, PCFG guessed Abc@1993 af-
ter 48,670 guesses and 12345678password after 130,555
guesses. JTR never guessed either password.

We found similar results in the two other pairwise
comparisons. Among passwords guessed by Markov,
PCFG, or both, 41% of guess numbers differed by at least
one order of magnitude. In an extreme example, the pass-
words 1qaz!QAZ and 1q2w3e4r5t6y7u8i were among the
first few hundred Markov guesses, yet not guessed by
PCFG’s guess cutoff. Conversely, unitedstatesofamerica
was among PCFG’s first few dozen LongBasic guesses,
yet never guessed by Markov. For 37% of passwords,
JTR and Markov guess numbers differed by at least one
order of magnitude. Markov was particularly strong
at guessing long passwords with predictable patterns.
For instance, password123456789, 1234567890123456,
and qwertyuiopasdfgh were among Markov’s first thirty
guesses, yet JTR did not guess any of them by its cutoff.

Actionable takeaways As researchers and system ad-
ministrators ask questions about password strength, they
must consider whether their choice of cracking approach
biases the results. When evaluating the strength of a
large, heterogeneous password set, any of Hashcat, JTR,
Markov, or PCFG—if configured effectively—provide
fairly similar answers to research questions. Nonethe-
less, we recommend the more conservative strategy of
calculating guessability using Minauto.

In contrast, guessability results per-password can dif-
fer by many orders of magnitude between approaches
even using the same training data. To mitigate these dif-
ferences, we again recommend Minauto for the increas-
ingly important tasks of providing precise feedback on
password strength to users and system administrators.

5 Conclusion

We report on the first broad, scientific investigation of
the vulnerability of different types of passwords to guess-
ing by an expert attacker and numerous configurations of
off-the-shelf, automated approaches frequently used by
researchers. We instrument these approaches, including
both adversarial tools and academic research prototypes,
to enable precise, guess-by-guess comparisons among
automated approaches and between them and the expert.
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We find that running a single guessing algorithm, par-
ticularly in its out-of-the-box configuration, often yields
a very poor estimate of password strength. However, us-
ing several such algorithms, well-configured and in par-
allel, can be a good proxy for passwords’ vulnerability
to an expert attacker. We also find that while coarse-
grained research results targeting heterogeneous sets of
passwords are somewhat robust to the choice of (well-
configured) guessing algorithm, many other analyses are
not. For example, investigations of the effect on pass-
word strength of password characteristics, such as the
number of character classes and the use of character sub-
stitutions, can reach different conclusions depending on
the algorithm underlying the strength metric.

Finally, we hope our investigation of the effectiveness
of many configurations of popular guessing approaches
will help facilitate more accurate and easily reproducible
research in the passwords research community. To that
end, we have created a Password Guessability Service [9]
that enables researchers to submit plaintext passwords
and receive guessability analyses like those presented in
this paper. We particularly encourage researchers investi-
gating password-cracking algorithms to contribute to this
service to improve the comparability of experiments.
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A Appendix

We provide additional measurements of how guessing
approaches perform in different configurations. To sup-
port the ecological validity of our study, we also repeat
analyses from the body of the paper on password sets
leaked from RockYou and Yahoo. We provide these de-
tails in hopes of encouraging greater accuracy and repro-
ducibility across measurements of password guessability.

A.1 Alternate PCFG Configurations
We tested four different PCFG configurations. As in the
body of the paper, PCFG represents Komanduri’s im-
plementation of PCFG [32], which assigns letter strings
probabilities based on their frequency in the training data
and assigns unseen strings a non-zero probability. For
consistency across approaches, we prepend all policy-
compliant elements of the training data in lieu of en-
abling Komanduri’s similar hybrid structures [32].

PCFG−noCV is the same as PCFG, but without
the training data prepended. PCFG−CV is equiva-
lent to PCFG−noCV except for using two-fold cross-
validation. In each fold, we used half of the test pass-
words as additional training data, with a total weighting
equal to the generic training data, as recommended by
Kelley et al. [31]. PCFG−2009 is our approximation
of the original 2009 Weir et al. algorithm [70] in which
alphabetic strings are assigned uniform probability and
unseen terminals are a probability of zero.

As shown in Figure 15, prepending the training data
and performing cross-validation both usually result in
more efficient guessing, particularly for Long and Long-
Basic passwords. All three other configurations outper-
form the original PCFG−2009 implementation.

Figure 16 shows the guessability of the 350 passwords
comprised only of digits across the Basic and LongBasic
sets. Similar to the results for passwords of other com-
mon characteristics (Section 4.3.2), approaches differed.
Of particular note is PCFG−2009, which plateaued at
around 50% of such passwords guessed in fewer than
10 million guesses. Idiosyncratically, through 1014

guesses, it would never guess another password of this
type because of the way it assigns probabilities.

A.2 Alternate JTR Configurations
We next separately analyze the sets of JTR mangling
rules we combined in the body of the paper. JTR stock
represents the 23 default rules that come with JTR.
JTR SpiderLabs represents 5,146 rules published by
KoreLogic during the 2010 DEF CON “Crack Me If You
Can” password-cracking contest [35], later reordered for
guessing efficiency by Trustwave Spiderlabs [64].
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Figure 15: The guessing efficiency of the different PCFG
configurations we tested.
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Figure 16: Guessing efficiency for the 350 Basic and
LongBasic passwords composed entirely of digits.
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As described in Section 3.3, our standard JTR config-
uration used JTR stock followed by JTR SpiderLabs. In
isolation (Figure 17), JTR stock rules were far more ef-
ficient on a guess-by-guess basis than JTR SpiderLabs.
Unfortunately, however, they quickly ran out of guesses.
We exhausted JTR stock in making fewer than 109

guesses for Basic passwords. More crucially, we made
fewer than 105 guesses that were valid Complex pass-
words before exhausting these rules. Thus, any analysis
of passwords that uses only the stock rules will vastly
underestimate the guessability of passwords that contain
(or are required to have) many different character classes.

The sharp jumps in the proportion of Complex and
LongComplex passwords guessed by JTR SpiderLabs
result from one group of 13 rules. These rules capitalize
the first letter, append digits, append special characters,
and append both digits and special characters.

A.3 Alternate Hashcat Configurations
We tested eight Hashcat configurations and chose the one
that best combined efficient early guessing with success-
fully continuing to guess passwords into the trillions of
guesses. These configurations consist of four different
sets of mangling rules, each with two different wordlists.
The smaller wordlist was the same one we used in all
other tests (Section 3.2). The larger wordlist augmented
the same wordlist with all InsidePro wordlists1 in de-
scending frequency order and with duplicates removed.

Our four sets of mangling rules are the following:
Hashcat best64: Although Hashcat does not have a de-
fault set of mangling rules, the Best64 mangling rules are
often used analogously to JTR’s stock rules.
Hashcat generated2: Hashcat comes with a second set
of mangling rules, “generated2.” This set comprises

1http://www.insidepro.com/dictionaries.php
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Figure 17: The guessing efficiency of JTR rules.

65,536 rules. Dustin Heywood of ATB Financial created
them by randomly generating and then testing hundreds
of millions of mangling rules over 6 months (2013-2014)
on a 42-GPU cluster. The rules were optimized by Hash-
cat developers by removing semantic equivalents.
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Figure 18: The guessing efficiency of Hashcat using four
different sets of mangling rules. We tested each set with
the wordlist used elsewhere in this paper, as well as a
larger (-big) wordlist adding the InsidePro dictionaries.
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Hashcat SpiderLabs: We performed a manual transla-
tion to Hashcat of the SpiderLabs JTR rules (Section 3),
which entailed removing clauses mandating minimum
criteria; such rules are not permitted in oclHashcat.
Hashcat MWR: We collaborated with with Matt Marx
of MWR InfoSecurity to obtain the set of 1.4 million
mangling rules he uses for password auditing [25, 44].
Following his suggestion, we augmented these rules with
the aforementioned SpiderLabs rules.

Using the smaller wordlist, we exhausted all four sets
of mangling rules. With the larger wordlist, we did not
exhaust any set of rules. The curves in Figure 18 that use
this larger dictionary have -big appended to the name and
are graphed with dotted, rather than solid, lines.

We present the results of these eight configurations in
Figure 18. True to their name, the Hashcat best64 rules
were the most efficient at guessing passwords. Unfortu-
nately, they ran out of guesses using the smaller wordlist
after only 109 guesses. For Complex and LongComplex
passwords, Hashcat best64 therefore guesses only a frac-
tion of the number possible using the other sets of man-
gling rules, albeit in far fewer guesses. While not the
most efficient guess-by-guess, the Hashcat MWR rules
eventually guessed the largest proportion of the different
sets, most notably the Complex and LongComplex sets.

A.4 Ecological validity
To better understand how well our password sets, which
we collected for research studies, compare to real plain-
text passwords revealed in major password leaks, we
compared the efficiency of the four automated cracking
approaches in guessing Basic passwords, as well as the
following two comparable sets of leaked passwords:
Basicrockyou: 15,000 passwords randomly sampled from
those containing 8+ characters in the RockYou gaming
website leak of more than 32 million passwords [67]
Basicyahoo: 15,000 passwords randomly sampled from
those containing 8+ characters in the Yahoo! Voices leak
of more than 450,000 passwords [22]

We found a high degree of similarity in the guess-
ability of the Basic passwords collected for research and
the leaked passwords. As shown in Figure 19, the four
automated cracking approaches followed similar curves
across the research passwords and the leaked passwords.

This similar guessability is notable because our analy-
ses depend on using passwords collected by researchers
for two reasons. First, no major password leak has con-
tained passwords contained under strict composition re-
quirements. Furthermore, in contracting experienced hu-
mans to attack the passwords, it was important to have
them attack passwords they had not previously examined
or tried to guess. Presumably, these experienced analysts
would already have examined all major password leaks.

In the body of the paper, we reported how differ-
ent approaches were impacted differently by the num-
ber of character classes contained in Basic passwords.
When we repeated this analysis for Basicrockyou and
Basicyahoo passwords, we found similar behavior (Fig-
ure 20). PCFG was more successful at guessing pass-
words containing two character classes, as opposed to
only a single character class. PCFG only guesses strings
that were found verbatim in its training data, which we
hypothesize might be the cause of comparatively poor
behavior for passwords of a single character class.
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(b) Basicrockyou

Hashcat

JTR

Markov

Min_auto
PCFG

0%

25%

50%

75%

101 103 105 107 109 1011 1013

Guesses

P
e

rc
e

n
t 

g
u

e
s
s
e

d

(c) Basicyahoo

Figure 19: The four automated cracking approaches tar-
geting the Basic password set, 15,000 passwords sam-
pled from the RockYou leak, and 15,000 passwords sam-
pled from the Yahoo leak.
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Figure 20: Combined percentage of Basicrockyou and
Basicyahoo passwords each approach guessed by the num-
ber of character classes in the password.


