
Published in International Journal of Information Security; Volume 8, Number 4; August 2009
The original publication is available at www.springerlink.com; DOI 10.1007/s10207-009-0084-3

Richard Shay · Elisa Bertino

A Comprehensive Simulation Tool for the Analysis of Password
Policies

Abstract Modern organizations rely on passwords for pre-
venting illicit access to valuable data and resources. A well
designed password policy helps users create and manage
more effective passwords. This paper offers a novel model
and tool for understanding, creating, and testing password
policies. We present a password policy simulation model
which incorporates such factors as simulated users, ac-
counts, and services. This model and its implementation en-
able administrators responsible for creating and managing
password policies to test them before giving them to actual
users. It also allows researchers to test how different pass-
word policy factors impact security, without the time and
expense of actual human studies. We begin by presenting
our password policy simulation model. We next discuss prior
work and validate the model by showing how it is consistent
with previous research conducted on human users. We then
present and discuss experimental results derived using the
model.

Keywords Password · Policy · Simulation ·Management

1 Introduction

Password-based authentication mechanisms are important
for information system security [2]. User authentication is
frequently performed by asking a user for a name and pass-
word combination [12]. Passwords are often the sole barrier
between a potential intruder and its target [3,11]. Organi-
zations are especially dependent on passwords security. If
the password of a single user becomes known to a malicious

Richard Shay
Norwood, MA 02062
Tel.: (781) 769-4233
E-mail: rich@richshay.com

Elisa Bertino
Purdue University
Department of Computer Sciences
305 N. University Street
West Lafayette, IN 47907-2107
E-mail: bertino@cs.purdue.edu

party, an entire system can end up being compromised [1].
In several cases, organizations have faced damage to their
reputation and finances from information theft [6].

Because passwords are so important, password policies
are critical. Unless their policy says otherwise, users tend
to create very simple passwords [1,5,4]. These simple pass-
words are especially vulnerable to attackers [13,12]. Pass-
word policies may force users to create more effective pass-
words. Password policies are regulations governing each
step of the password lifecycle, from how they are created
to when they are deleted [10]. A sound password policy can
increase the overall security of an organization [6].

Although having an effective password policy is clearly
important, gathering empirical evidence about what consti-
tutes such a policy remains difficult. At present, studying the
effectiveness of the facets of a password policy is often ac-
complished by conducting surveys and studies on actual hu-
man users. Examples of such studies are found in Section 4.
However, performing experiments on human users is both
time-consuming and costly, and may raise privacy concerns.

The primary contribution of this paper is a password pol-
icy simulation model (model). This model is a significant en-
hancement and extension of the model presented in our prior
work [10]. The model considers technical factors and human
factors essential to the creation of a successful password pol-
icy [8]. The model highlights the interaction between pass-
word policy and financial health, underscoring the central
role policy plays in safeguarding the assets of an organiza-
tion [6]. The model has been implemented in a simulation
tool called the Password Policy Simulation Tool (PPST).

Our model in general and PPST in particular are power-
ful, novel resources for administrators and researchers. Our
work is novel because it enables more precise and thorough
study of password policies, without the complexity of using
live human test subjects. It facilitates research on password
policies and the creation of actual password policies.

The paper is organized as follows. Section 2 presents the
high-level concepts underlying our password policy simula-
tion model, and the data used in the model. Section 3 de-
scribes the algorithms employed by our model. We discuss
previous research and validate the model in Section 4. Ex-

2 Richard Shay, Elisa Bertino

periments conducted using PPST and their results are pre-
sented and discussed in Section 5.

2 Model Concepts

feq This section and the next describe the password policy
simulation model. In this section, we cover the high-level
concepts underlying the model and its variables. In Section 3
we present how those variables are used in the model’s algo-
rithms.

2.1 Users, Accounts, and Services

The model computer system is divided into three primary
types of components: Users, Accounts, and Services. The
model requires at least one of each of these components.
A User represents a single person legitimately using the
computer system. An Account represents one account with
which a user logs into the system. A Service represents a
resource utilized by a User through an Account, to perform
work and generate income. For example, Plato is a User;
Plato’s username represents an Account; and his email rep-
resents a Service. Plato logs into his Account to access his
email Service.

Each User must have at least one Account and may have
more than one. Each Account belongs to exactly one User;
Users may not share Accounts. Each Account has one or
more Services. Different Accounts may share the same
Services. A Service is not assigned directly to a User;
they are connected only through an Account. Figure 4 illus-
trates this graphically.

No new Users, Accounts, or Services are created
while the Simulation is running. Which Users have which
Accounts, and which Accounts access which Services,
remain static.

2.2 Accounts and Passwords

Each Account has exactly one password at any time. An
Account may be configured such that its password expires
after a set period of time. If its password expires, an Account
creates a new password. A User may also request a new
password as described in Subsection 2.4. Each Account is
given a new password on the first day in the model. All
passwords for a given Account have the same length and
per-character entropy. Each new password is assumed to be
entirely new.

2.3 Being Compromised

At any point in time, each Account and each Service is
either Compromised or not Compromised. All Accounts
and Services start as not Compromised. An Account is

considered to be Compromised if and only if a malicious
entity knows its password. A Service is considered to
be Compromised if and only if there is a Compromised
Account which accesses it. In this model, a User is never
considered Compromised. A Compromised Account is no
longer Compromised when it receives a new password. A
Compromised Service is no longer Compromised when
none of the Accounts accessing it are Compromised.

How Accounts and Services are Compromised is il-
lustrated in Figure 1.

Fig. 1 A malicious user has obtained the password used in Account
A2. This causes Account A2 to become Compromised, which in turn
causes Service Y to become Compromised. This is indicated by the
dashed lines.

2.4 Help Desk

The help desk is a resource which Users may call to create
a new password for one of their Accounts. A User may call
the help desk when the User, rightly or wrongly, suspects
that an Account has become Compromised. Calling the help
desk assigns a new password to the Account and makes it
not compromised.

Note that the help desk is not called to create a new pass-
word when a password expires. It is only used to create new
passwords at irregular intervals. In addition, there may be
a cost associated with calling the help desk, as covered in
Subsection 2.8.

2.5 The Memorization Cycle

The password lifecycle is shown in Figure 2. Each password
belongs to an Account, which in turn belongs to a User. A
password is at any time either written down or not written
down. When a new password is created, its User attempts
to memorize it. A password not successfully memorized is
written down. Each day, the User attempts to memorize the
password and thereby have it be no longer written. Subsec-
tion 3.1 explains how the probability of a successful memo-
rization is determined. When a new password is created for
an Account, its old password is discarded and the process
of memorization begins again, with its User trying to mem-
orize the new password.

A Comprehensive Simulation Tool for the Analysis of Password Policies 3

Fig. 2 The lifecycle of a password. A password may end a day only in
one of the two highlighted states.

2.6 Password Inundation

As shown in Subsection 4.3, research has found that a User
can become less successful at memorizing passwords if that
User is forced to memorize too many passwords too fre-
quently. In our model, this phenomenon is called password
inundation. Password inundation in the model is based on
the average number of new passwords a user receives per
day. For example, if Plato has two Accounts which both
must have their passwords changed every 30 days, then Plato
has 1

15 new passwords per day, on average. The calculation
of average passwords per day includes only regularly sched-
uled password changes, not those resulting from a call to the
help desk. The password assigned to each Account on the
first day of the simulation is excluded from this number, as
are those Accounts whose passwords do not expire.

2.7 Attacks and Vulnerabilities

There are two ways in which an Account may become
Compromised. First, each Account is daily subject to a
specified number of brute force attacks. The longer and more
complex the password of the Account, the less likely it is to
become Compromised in such an attack. Second, if the pass-
word of an Account is written down, it is daily subject to an
additional probability of becoming Compromised.

2.8 Model Data

The input to the model consists of four components: the
Simulation-wide variables; and one list each of Users,
Accounts, and Services. The input variables for the en-
tire simulation are shown in Table 1. Input variables defined
for each User are listed in Table 2. Input variables for each
Account are in Table 3. Table 4 contains the input variables
for each Service.

As with input, output is divided into four parts. There
are Simulation-wide output values. There are also specific
output values for each User, Account, and Service. Output
variables for the entire simulation are found in Table 5. Out-
put variables for each user are found in Table 6. The output
for each Account is listed in Table 7. The output variables
for each Service are in Table 8.

2.9 Input Data Notes

maxDayssets the duration of the simulation; the simulation is
run for the specified number of whole days. The simulation
is given a list of the Users, Accounts, and Services to be
in the simulation. Each User includes a list of Accounts;
these are the Accounts associated with that User. Each
Account includes a list of Services; these are the services
associated with that Account.

The different User variables configure factors such as
whether the User becomes more familiar with a given pass-
word over time and how likely the User is to believe falsely
that he or she is compromised. This is also where the daily
cost of the User is specified. Note that User.memory indi-
cates how likely the User is to memorize a password of
seven digits, and not necessarily an actual password which
the User might have. This enables the memories of different
Users to be entered in a uniform, comparable manner. The
actual probability of the User memorizing a given password
is calculated as a function of several factors, as is shown in
detail in Subsection 3.1.

User.incomeMultiplier is a number which is multi-
plied by whatever income the User would generate. If this
value is set to 1 for each User in an organization, then
how much a User generates becomes a function of which
Services that User accesses. However, to indicate that a
given user is able to generate greater value from the same
service, this may be set higher for that user. Likewise, for a
malicious user who generates nothing whatsoever, this may
be set to 0 to prevent any income from being generated by
the user.

Account.numAttacks and Account.compWrit enable
the administrator using the simulation to specify which
sorts of threats present themselves in an organization.
If an organization is under constant external attack
on its passwords, but there is little danger of some-
one physically present maliciously using found informa-
tion, then Account.numAttacks would be higher and
Account.compWrit would be lower. The input variables of

4 Richard Shay, Elisa Bertino

Variable Type Description
Name String Name of the Simulation
maxDays long Number of days for the Simulation to run
users List<User> All Users in the Simulation
accounts List<Account> All Accounts in the Simulation
services List<Service> All Services in the Simulation

Table 1 Input variables for the whole model

Variable Type Description
Name String Name of the User
dailyCost double Daily cost of the User
memory double Base probability that the User remembers a seven-digit password

after seeing it for the first time
falsSuspect double For each Account per day, if that Account is not Compromised,

this is the probability that the User believes it is
trueSuspect double For each Account per day, if that Account is Compromised, this

is the probability that the User believes it is
incomeMultiplier double All income of User is multiplied by this
inundationMax double Maximum probability that User fails to memorize a password due

to password inundation
inundationConst double Multiplicative constant for password inundation; the higher the

constant, the more the User is affected by inundation
learningCurve double Determines how well User learns a new password in time; 0 in-

dicates the User doesn’t become more familiar in time
accounts List<Account> List of the Accounts which belong to this User

Table 2 Input variables for each User

Variable Type Description
Name String Name of the Account
numAttacks long Daily brute-force attacks against this Account
compWrit double Daily probability that the Account is Compromised, if its pass-

word is written down
passExpire long The password expires after this many days; if this is less than 1,

then the password never expires
passLength long Length of the password
charEntropy double Per-character entropy of the password
helpDeskCost double Cost per help desk call for this Account
probForget double Daily probability that memorized password is forgotten, if mem-

ory check fails; if zero, a memorized password is not forgotten
services List<Service> Services which are accessed by this Account

Table 3 Input variables for each Account

Account are also where the administrator specifies pass-
word requirement information, such as the length and com-
plexity of passwords, and how often those passwords expire.

Note that the input variable Account.ProbForget is the
probability that a User with a memorized password for-
gets that password, if and only if that User has already
failed a daily memory check. In other words, each User
with a memorized password must make a memory check
each day against his or her password. If that User fails the
check, then the User forgets his or her memorized pass-
word with probability equal to Account.ProbForget. If
Account.ProbForget is zero, a memorized password is
never forgotten.

Note that the input variables for a Service include both
Service.compDailyCost and Service.compIncomeMult.
These are both variables which indicate the effect of
being Compromised on a Service, but they do so
in different ways. Service.compDailyCost is an addi-

tional daily cost of a Service being compromised, while
Service.compIncomeMult is a value by which all in-
come of the Service is multiplied when Compromised.
If being Compromised causes a given service to cease
generating value, but does not entail any other ex-
penses, then Service.compDailyCost may be low while
Service.compIncomeMult may be a small fraction.
Whereas, if a Service being compromised leads to costly
public relations or compliance expenses for an organization,
then Service.compDailyCost may be significantly higher.

3 Model Algorithm

This section explains the algorithms in the model. We first
describe the formulas and subroutines used in model, and
then show how they are combined into the single main algo-
rithm.

A Comprehensive Simulation Tool for the Analysis of Password Policies 5

Variable Type Description
Name String Name of the Service
standardDailyCost double Standard daily cost of the Service
compDailyCost double Additional daily cost of this Service being Compromised
compIncomeMult double When Compromised, all income generated is multiplied by this
standardIncome double Standard daily income of the Service

Table 4 Input variables for each Service

Variable Type Description
balance double Final balance
balance maximum double Maximum possible balance, assuming nothing was

Compromised
in double Actual Income
in maximum double Maximum possible income, assuming nothing was Compromised
out double Actual cost
out minimum double Minimum possible cost, assuming nothing was Compromised
out users double Cost from Users
out accounts double Total cost from Accounts
out accounts
falseSuspicion

double Cost from Accounts having false suspicion

out accounts
trueSuspicion

double Cost from Accounts having true suspicion

out accounts
forgottenPassword

double Cost from Accounts forgetting memorized passwords

out services double Total cost from Services
out services
standard

double Cost from Services, standard operating costs

out services
compromised

double Cost from Services, resulting from being Compromised

Table 5 Output variables for the whole simulation

Variable Type Description
balance double Final balance of User
totalIncome double Total income from User
totalCost double Total cost of User
num maxDaily
IncomeHash

HashMap
<Service,
Double>

Maximum daily Income per Service

num incomeHash HashMap
<Service,
Double>

Total actual income per Service

Table 6 Output variables for each User

3.1 User Memory

Suppose that User U has Account A. There are multiple
occasions when the memory of User is tested against the
password of A. This occurs, for example, when A is as-
signed a new password, to determine whether that password
is written down. It also occurs to check whether a User who
has memorized a password later forgets that password. Each
such memory check results either in a success or a failure.
The derivation of the probability of failure of this memory
check is described in detail here.

The factors considered in determining the success of the
memory check are the memory ability of U, the complex-
ity of the password, password inundation, and the age of the
password. The algorithm uses User and Account input vari-
ables described in Subsection 2.8.

Let us define the following variables, which are either
tracked by the Simulation or derived from administrator-
defined values. None of these values are input directly by the
administrator.

– A.passEntropy is the total entropy of the password of A
A.passEntropy = A.passLength * A.charEntropy

– U.∆ is the average daily number of new passwords for U
U.∆ = Σ n

i=1(U.Account i.passExpire)−1

where n is the number of Accounts of U with expiring
passwords
Note that U.∆ includes only scheduled password
changes

– Pi is the probability that U fails the memory check due
to inundation
Pi = MAX(MIN(U.∆* U.inundationConst,
U.inundationMax), 0)

6 Richard Shay, Elisa Bertino

Variable Type Description
num newPassword long Number of new passwords assigned
num writePassword long Number of times password written down
num
unwritePassword

long Number of times a written password is memorized

num becomeComp long Number of times the Account becomes Compromised
num helpDeskCall long Number of help desk calls
num trueSuspicion long Number of help desk calls based on true suspicion
num falseSuspicion long Number of help desk calls based on false suspicion
num
forgottenPassword

long Number of help desk calls based on forgetting passwords

num
bruteforceAttacks

long Number of brute force attacks; they only occur if not
Compromised

num
bruteforceSucceed

long Number of successful brute force attacks

num
writtenAttack
Succeed

long Number of times password Compromised by being written

num daysEndComp long Number of days ended Compromised
num daysEndUncomp long Number of days ended not Compromised

Table 7 Output variables for each Account

Variable Type Description
totalCost double Total cost of this Service
standardCost double Cost from the standard operation of this Service
compCost double Cost due to being Compromised
daysComp long Number of days finished Compromised
daysUncomp long Number of days finished not Compromised

Table 8 Output variables for each Service

– age is the number of days for which the password of A
has existed

Using the above variables, we can calculate the proba-
bility of U failing a memory check. Let the probability of
U failing be P . Let the probability of U failing the mem-
ory check, without regard to inundation or password age, be
P0. Note that P0 and P refer to probability of failure to
memorize, while U.memory is a probability of succeeding.

We make the following assumption:

P(f ail memorize 7−digit number)
Complexity o f 7−digit number

=
P0

Complexity o f password
(1)

Therefore:

1−U.memory
7∗ log210

=
P0

A.passEntropy
(2)

Therefore:

P0 =
(1−U.memory)∗A.passEntropy

7∗ log210
(3)

P0 and Pi are independent probabilities that U fails. The
probability of U failing due to neither of them is:

(1−P0)∗ (1−Pi) (4)

Therefore, the probability of U failing from at least one of
them is:

1− (1−P0)∗ (1−Pi) (5)

Finally, we allow U to be more likely to succeed in
memory checks with increasing familiarity with a pass-
word. Therefore, we raise the entire probability of failure
to a power which reflects the age of the password, and how
quickly U learns:

1+U.learningCurve∗age (6)

This value is always at least one. Note that if
U.learningCurve is zero, then the memory checks do not
become more likely to succeed over time. Note also that
since the value of age on the day a password is assigned
is zero, U.learningCurve does not affect how likely U is to
memorize a password on its day of creation.

This gives us:

P = (1− (1−P0)∗ (1−Pi))
1+U.learningCurve∗age (7)

P is the probability that U fails in a given memory
check. In Algorithm 1, A.memCheck() returns false with
a probability of P and true otherwise.

3.2 Brute Force Attacks

The likelihood of a brute force attack succeeding against an
Account is a function of the complexity of its password.
A.passLength is the number of characters in the password
of A, and A.charEntropy is the entropy of each character
in the password of A. The total entropy of a string of text
is the sum of the entropy of its characters. Therefore, for an

A Comprehensive Simulation Tool for the Analysis of Password Policies 7

account A, the total entropy of its password is the number of
characters in its password A.passLength multiplied by the
per-character entropy A.charEntropy:

A.passEntropy = A.passLength∗A.charEntropy (8)

A.passEntropy represents the minimum number of bits
which uniquely determine the password of A [9]. Put an-
other way, the number of passwords possible under the pol-
icy of A, with fixed per-character entropy and length, is
2A.passEntropy. Therefore the probability of a single brute
force attack succeeding against A is defined as:

P(Brute Force Succeeds) =
1

2A.passEntropy (9)

A is subject to A.numAttacks brute force at-
tacks each day. In Algorithm 1, the function
A.bruteForceAttacksSucceed() returns true with a
probability equal to that of at least one of the daily brute
force attacks against A succeeding.

3.3 Cost and Income

3.3.1 Balance

The concept of a balance is key to the entire model. Bal-
ance is the net amount of profit made by the organization
depicted in the simulation. The higher the balance, there-
fore, the more profit the organization has earned. Balance
is net profit, the income minus cost. Using balance enables
viewing the success of a given password policy in monetary
terms. It also allows for two different password policies to be
compared easily; if one policy leads to a higher balance than
the other, the former is more likely to be a better password
policy.

Balance = Income−Cost (10)

In Algorithm 1, the function calculateIncomeCost()
performs the cost and income calculations, as described be-
low.

3.3.2 Income

All income is generated by a User U utilizing a Service
S. U is considered to utilize S if and only if U has at least
one Account which accesses S. U having more than one
Account accessing S does not increase the income U gener-
ates utilizing S.

If S is not compromised, the daily income generated by
U utilizing S is:

U.incomeMultiplier ∗S.standardIncome (11)

If S is compromised, the daily income generated by U
utilizing S is:

U.incomeMultiplier ∗S.compIncomeMult ∗S.standardIncome (12)

3.3.3 Cost

The model includes both fixed daily costs and variable costs.
Each User U has a fixed daily cost, U.dailyCost. Each
Account A incurs a cost, A.helpDeskCost, whenever its
User calls the help desk. Each Service S has a fixed daily
cost, S.standardDailyCost. In addition, each day that S
ends compromised has an additional cost S.compDailyCost.

3.4 The Daily Algorithm

The atomic unit of time for the model is the day. Each sim-
ulation is run for a specified number of whole days. The al-
gorithm is found in Algorithm 1.

4 Assumptions, Related Work, and Validation

This section discusses the assumptions made in the model,
prior related work, and the validation of our model. These
three topics are included in a single section because they
related to one another; the related work shows that our as-
sumptions are reasonable, and this in turn helps to vali-
date the model. We begin by contrasting our current model
with that presented in our previous work on password pol-
icy simulation. We then discuss assumptions made in our
model. Next, we validate the model by considering it and
its assumptions in light of results found in studies on human
users. Then, we discuss other relevant papers.

4.1 Our Prior Model

Our previous work, “Password Policy Simulation and Anal-
ysis,” presents a model for simulating password poli-
cies [10]. Our new model makes significant improvements
to that model.

The most salient improvement to our model is the intro-
duction of a financial balance. In the previous model, dam-
age to the simulated system is measured as a unitless integer
called harm. The new model measures damage to the or-
ganization by tracking cost and income, and how these are
both impacted by security lapses. This is more intuitive and
meaningful than the previous harm value.

In our prior work, the computer system consists only of
sets of Users. The new model divides the resources of a
computer system into three parts – Users, Accounts, and
Services. The old model is illustrated in Figure 3. The new
model is shown in Figure 4.

Dividing the computer system into distinct users, ac-
counts, and services allows new opportunities for research.
A single sign-on system may be simulated by giving each
User a single Account which accesses multiple Services.
If multiple Users are sharing a Service, the Account of
one such user being Compromised can impair the productiv-
ity of all Users wishing to access that Service. In this way,
Users are more interdependent than before.

8 Richard Shay, Elisa Bertino

Fig. 3 The old model structure has no accounts or services.

Fig. 4 Under the new model, Users may have any number of
Accounts and thereby have access to one or more Services.

Moreover, different Users may be assigned access only
to specific Accounts, and Accounts to Services. This
gives the person using this simulation, the administrator,
fine-grained control of how the Simulation components in-
teract with one another. In addition, this control allows the
separation of Users from their roles in the simulation.

4.2 Model Assumptions

While we have strived to create a model as rigorous as possi-
ble, any simulation model is forced to make assumptions. A
model such as this requires translating observed trends into
concrete rules and formulas. We have, however, been very
careful about which assumptions to make; all assumptions
described here are mentioned and shown to be supported by
studies on human users in Subsection 4.3.

We begin by assuming that a password policy may have a
direct impact on the financial health of an organization. Fur-
ther, we assume that a successful attack against the informa-
tion infrastructure of an organization can have cost beyond
just the immediate loss of whatever income the effected ser-
vices would have generated. We assume that if a single ac-
count which uses a service becomes compromised, then the
service itself can become compromised.

We assume that the users of an information system are
under constant attack on their accounts. Their passwords
may be cracked by brute-force methods, and they may be
compromised by human carelessness as well. We assume
that users often write down their passwords, and further we
assume that doing so can increase the likelihood that their
passwords become compromised.

We assume that users opt for passwords as short and sim-
ple as allowed under their policy. We also assume that pass-
words become less vulnerable to brute force attacks as they
become more complex. We assume that having more pass-
words can make a user less likely to recall a particular pass-
word, as can changing passwords more frequently.

4.3 Model Validation

The value of our model is predicated on the postulate that
the simulation approximates genuine user behavior and its
consequences. This, in turn, requires that the assumptions
made in our model be reasonable. We have listed model as-
sumptions above in Subsection 4.2. In this subsection, we
consider published research involving real-world users. We
show how each of the assumptions listed in Subsection 4.2
is validated and shown to be reasonable by studies on actual
human users. This subsection thus validates our model.

Bishop et al. [1] conduct a study in which site admin-
istrators submit their password files to be cracked through
an automatic cracking program. In an average system with
50 passwords, five to 15 are usually cracked in a single day;
this bolsters our model’s assumption that passwords are vul-
nerable to automatic attack. The paper by Bishop et al. also
supports our model’s assumption that a single compromised
account for a given service leads the entire service to be-
come compromised. Bishop et al. state that a single non-
root account being compromised in a given system can be
leveraged into any information on that system being com-
promised or destroyed. This study observes that users tend
to opt for simple passwords. This is in agreement with our
model assumption that users create passwords as simple as
allowed by their policy. Bishop et al. also note that a written
password is another source of being compromised, as is the
case in our model.

Kuo et al. [3] conduct a survey in which users are asked
to create two different passwords, one being under more re-
strictions than the other. For the standard passwords, with
fewer restrictions, six percent are vulnerable to dictionary
attacks, another five percent to a dictionary attack using per-
mutations of words, and yet another eight percent to brute
force attacks. This indicates that, as is the case in our model,
passwords generated by humans are often subject to being
cracked by automated, brute-force attacks. In addition, in
our model, users can be set to create passwords of low en-
tropy compared to the possible entropy for a password of
a given length. This is in line with the authors’ observation
that humans seldom use random text for their passwords, but
instead use characters with a frequency reflective of the char-
acter frequency in their language. Since Shannon [9] shows
that English does not use characters with equal frequency,
we know that this leads to lower total password entropy.

The idea that users use passwords as simple as allowed
is further illustrated by research conducted by Leyden [4].
Leyden conducts a survey of office workers. Users tend to
use simple, easily guessed passwords. “password” is the
most common password, followed by the name of the user
or a sports team. This bolsters our assumption that users se-
lect simple passwords when able to do so. Ninety percent of
workers in Leyden’s study are willing to divulge their pass-
words for a pen; as in our model, a system can become com-
promised through human as well as technical factors.

Polstra et al. [6] highlight findings from actual cases of
computer security breaches. In our model, human errors can

A Comprehensive Simulation Tool for the Analysis of Password Policies 9

lead to a system becoming compromised; Polstra et al. point
out that this is quite often the case for actual systems. More-
over, Polstra et al. provide data regarding the financial harm
to corporations because of a successful attack. The harm
arising from being compromised, they point out, is not lim-
ited to merely the loss of the compromised computer system.
Rather, the negative attention and loss of good name brought
about by a security breach can exceed the harm done to a
company by actual data loss. This is reflected in our model.
When a service is compromised, the harm done to the orga-
nization is not limited to losing some of the productivity of
the service itself; there may be in addition a daily cost asso-
ciated with being compromised. Further, Polstra et al. show
that computer security is a business issue, not just a tech-
nical one. They demonstrate that a poor security policy can
have financial consequences for an organization. This fact is
reflected in our model, because security problems are trans-
lated into financial loss; thus the model depicts a security
breach as a business loss.

Proctor et al. [5] perform experiments on password re-
strictions, in which users create passwords according to dif-
ferent criteria. In the first experiment users are divided into
two groups, in which one is required to use a more strict
password policy than the other. Using an automated crack-
ing tool, 18 of the 24 less restricted passwords are cracked,
while only eight of the 24 more restricted passwords are
cracked. In the second experiment, users are required to use
longer passwords, which results in fewer being cracked. It
is found that users tend to make simple passwords unless
forced to do otherwise, something reflected in our model. In
addition, increasing the length of the password or increasing
the restrictions placed on password generation reduces the
likelihood that the password becomes cracked by an auto-
mated tool in the experiments. This matches our model in
that increasing the complexity of the password, by increas-
ing either its length or its per-character entropy, reduces its
chance of being cracked.

A survey conducted by SafeNet [7] focuses on password
usage in organizations. It finds that about half of employees
write down their passwords. Over eighty percent of those
employees also have three or more passwords. These pass-
words, in turn, are usually used to access multiple applica-
tions each. Almost half of the users who responded to the
survey need to have their passwords reset at least once per
year. Each of these findings matches our model. The model
allows users to write down their passwords, to have multiple
passwords, to tie a single password to multiple services, and
to have the help desk reset a password should it be forgotten.

Vu et al. [12] perform experiments on the time and num-
ber of attempts required for users to create and recall pass-
words which satisfy various requirements. There are two
salient experiments on users and passwords. In the first ex-
periment, users are divided into two groups. The users in
the first group create three accounts with different passwords
and the users in the second group create five accounts each.
The experiment studies the comparative recall of users in
both groups. The main finding of the experiment is that users

are significantly more successful with recall when they have
three passwords rather than five; users in the five-account
group are more likely to forget some of their passwords. In
the second experiment, users are divided into two groups,
and only one group is required to use a special character and
a digit in passwords. This means that one group has more
complex passwords than the other; in other words, one group
has a higher required entropy for its passwords. Again, re-
call is compared for the groups. Users are less able to recall
the more complex passwords; users forget the more complex
passwords about twice as frequently. However, a cracking
program is able to crack the passwords with fewer require-
ments 62 percent of the time, but only two percent of the
time for the more complex passwords.

These two experiments by Vu et al. are in accord with
our model. The first experiment shows that users are better
able to recall passwords when they have fewer passwords to
recall; in our model, password inundation can result in users
in having greater difficulty recalling an individual password
as there are more passwords to recall. Vu et al. note that
difficulty in recalling passwords may arise from having too
many passwords at once, and from too frequently changing
a given password, as our model also represents. The second
experiment indicates that a more complex password is more
difficult for a user to recall, but is also more difficult to crack.
That is also the case in our model; increasing the entropy of
a password decreases the likelihood that a user recalls it, but
also decreases the likelihood that it becomes cracked.

4.4 Other Relevant Works

Gehringer comments on the password-related difficulties
faced by the modern user [2]. Lack of common password
standards and policies can leave users struggling to recall
different requirements for different systems, which can be
confusing. Users can also be confounded by the number of
passwords required to be memorized, making them more
likely to write down their passwords.

Sasse et al. argue that security designers ought to identify
and address root causes of poor user behavior [8]. They be-
lieve that a more user-centered design would help users be-
have in ways more consistent with good security practices.
For example, complex and conflicting password policies can
cause users to write down their passwords. The authors ar-
gue that while those creating security policies often view hu-
mans as enemies of security, policies created to help humans
be good users are important to security. The focus on human
factors is reflected in our model.

Summers et al. provide an analysis of passwords and
their policies [11]. They recount many of the policy diffi-
culties which our model takes into account. Users often se-
lect simple passwords when their policy permits, and this
can lead to the password being easily cracked. On the other
hand, passwords too difficult to remember can result in users
writing them down. The authors also point out that overly
frequent password changes can lead to problems.

10 Richard Shay, Elisa Bertino

5 Experiments

5.1 Experimental Methodology

This section describes four different experiments and their
results, each performed using the simulation tool PPST. In
the discussion of the methodology used in the experiments
we use the following terms:

– A run is a single execution of PPST.
– A runset is a set of runs, each having the exact same

input parameters.
– An experiment is conducted by creating a number of
runsets which are similar to one another in input and
examining how the differences in their inputs result in
differing output.

For example, we may perform an experiment to as-
sess how modification to password length impacts the fi-
nal balance by creating a number of runsets which dif-
fer from one another only in password length. We may thus
visualize an experiment by plotting a set of points to repre-
sent its runsets. Each point on the graph represents a runset.
For each point, its y− coordinate represents the mean final
balance of the runs in that runset. Recall that, all else be-
ing equal, a higher final balance indicates better total secu-
rity. Each point’s x− coordinate represents the value of the
changing input variable for that runset, password length in
the case of our example. In this way, the graphs indicate how
changing the value of an input variable impacts security.

5.2 Password Entropy Experiment

This experiment assesses how changes to password
complexity affect security. The input variables com-
mon to each runset are listed in Table 9. The value
of Account.charEntropy changes between runsets and
the other input values are constant. The results are
shown in Figure 5. The x − axis indicates the value of
Account.charEntropy. This ranges from 1.0 to 5.9 in-
creasing by increments of 0.1. According to the input in Ta-
ble 9, users are very likely to succeed in memorizing for the
low values of the range, and less likely to succeed for the
higher values.

The results show that when passwords have low en-
tropy, they are easily cracked. Passwords being cracked
leads to a decreased balance because accounts and there-
fore services become compromised. However, when pass-
words become too complex, users have difficulty memo-
rizing them. This leads to users writing down their pass-
words, which in turn leads to their accounts being com-
promised. Therefore, the best policy is to strike a balance
between overly complex and overly simple passwords. Pass-
words ought to be complex enough to be difficult to crack,
but not so complex that users are unable to recall them.
That is why the balance is maximized around the middle of
the graph, where Account.charEntropy is 2.7. To give an

idea of what this might look like, consider that standard writ-
ten English has a per-character entropy of around one [9]. A
password composed randomly of uppercase and lowercase
English letters, the digits 0 through 9, underscore, and space
has a per-character entropy of six.

5.3 Password Inundation Experiment

This experiment analyzes how different frequencies in pass-
word change impact security. Each run in this experiment
involves 64 users who are each given eight accounts. Each
account connects to exactly one service, and no service
is accessed by more than one account. Therefore, each run
has 64∗8 = 512 services. Each runset contains 16 runs.
The input values common to each runset are found in Ta-
ble 9. The value of Account.passExpire is the same for
each account in a given runset but varies across runsets.
This value ranges from 5 to 300 increasing in increments of
5. This experiment is run for four years of simulated time,
to highlight better the long-term impact of password inunda-
tion.

The results of this experiment are shown in Figure 6.
These results indicate that when passwords are changed too
frequently, the final balance greatly decreases. Users can
become flooded by having to remember too many passwords
too quickly. This results in their writing down those pass-
words rather than memorizing them, which in turn can lead
to the passwords becoming compromised. The results also
indicate that there is little difference between requiring pass-
words to be changed every 100 days and every 300 days. Al-
though password changes can cause an account to no longer
be compromised, this may be offset by the difficulty which
users have with being inundated by new passwords.

5.4 Service Sharing and Attacks

This experiment compares multiple users sharing a sin-
gle service with users each having their own copy
of a service. In each run in this experiment, there
are 32 users. This is a reasonable number of users for
a small office environment. Each runset contains 256
runs. The input value that changes between runs is
Account.numAttacks, the daily number of brute force at-
tacks against the accounts. The input values that do not
change between runsets are listed in Table 9. The value of
Account.numAttacks ranges from 0 to 202, increasing in
increments of one.

Unlike in the above two experiments, for each value
of Account.numAttacks, there are two runsets created.
They have the same input values, but differ in their compo-
sition. In one runset, all 32 users share a single service.
In the other runset, each of the 32 users has an individual
copy of the service to use.

The results of this experiment are shown in Figure 7. One
line indicates the average final balance values for runsets

A Comprehensive Simulation Tool for the Analysis of Password Policies 11

Variable Exp. 1 Exp. 2 Exp. 3 Exp. 4
Simulation.maxDays 365 1460 365 365
Number of Users 100 64 32 var
Users Share Services? No No var var
Runs per Run Set 50 16 256 256
Service.standardDailyCost 2.0 10.0 10.0 10.0
Service.compDailyCost 2.0 5.0 5.0 5.0
Service.compIncomeMult 0.75 0.5 0.50 0.50
Service.standardIncome 20 30 30 30
Account.numAttacks 5 10 var 150
Account.compWrit 0.15 0.10 0.05 0.05
Account.passExpire 60 var 60 60
Account.passLength 6 6 8 8
Account.charEntropy var 2.0 2.0 2.0
Account.helpDeskCost 4 5 2.0 2.0
Account.probForget 0.0 0.0 0.1 0.1
User.dailyCost 4 20 12 12
User.memory 0.75 0.50 0.75 0.75
User.falsSuspect 0.01 0.01 0.01 0.01
User.trueSuspect 0.05 0.05 0.05 0.05
User.incomeMultiplier 1.0 1.0 1.0 1.0
User.inundationMax 0.2 1.0 0.3 0.3
User.inundationConst 0.5 1.0 1.0 1.0
User.learningCurve 0.5 0.01 0.5 0.5

Table 9 Experiments’ input variable values. The meanings of the variables are explained in Subsection 2.8.

Password Entropy

350000

370000

390000

410000

430000

450000

470000

490000

510000

530000

0 1 2 3 4 5 6 7

Per-Character Entropy

B
al

an
ce

Fig. 5 Comparison of balance and password complexity

in which users share a single service. The other line in-
dicates the balance for runsets in which users are each
given their own services.

We see that when there are fewer attacks made against
accounts, then it is better for users to share a single
service. This reduces total cost because the daily cost of
only a single service must be paid, instead of paying for

12 Richard Shay, Elisa Bertino

Password Expiration

8000000

8500000

9000000

9500000

10000000

10500000

11000000

11500000

12000000

12500000

0 50 100 150 200 250 300 350

Password Expires, days

B
al

an
ce

Fig. 6 Comparison of balance and password change frequency

one service per user each day. As show in Figure 7, these
savings can be substantial. However, as the daily number of
brute force attacks against accounts increases, using a sin-
gle shared service becomes increasingly risky. This is be-
cause when users share one service, if any account using
the one service becomes compromised, the entire service
becomes compromised for all users. Whereas, if each user
has an individual instance of the service, and that instance
is compromised, the other users are not affected.

It is worth noting that the fixed parameters set forth in
Table 9 have a significant impact on these results. If, for ex-
ample, the passwords in this experiment were so complex
that they were almost never cracked, there might be a higher
final balance for users sharing a service for a higher value
of Account.numAttacks

5.5 Service Sharing and Number of Users

Whereas the previous experiment explores the impact of
users sharing services as the number of attacks in-
creases, this experiment explores the impact of users shar-
ing services as the number of users increases. As above,
there are two groups of runsets, one with users sharing a
single service and one with each user having an individual
copy of the service. The only input value which changes

between runs is the number of users, which ranges from
2 to 96 in increments of two. The input values that do not
change between runsets are listed in Table 9. The number
of daily attacks on each account, 150, is chosen because it is
around where the two lines in the graph for the above exper-
iment intersect.

For low numbers of users, there is a greater balance
when those users all share a single service. This is be-
cause each account is individually unlikely to be compro-
mised at any given time, and money is saved by supporting
just one service. However, although increasing the number
of users increases the balance in both cases, it increases
more rapidly when each user has an individual service.
When each user has an individual service, adding more
users causes the balance to grow linearly. This is not the
case when one service is shared by all users, because each
added user increases the potential that the single service
becomes compromised, thereby reducing the income of all
users.

6 Conclusion

Current research indicates that while passwords are used
to protect increasingly valuable assets, creating an optimal
password policy for a given organization remains an open

A Comprehensive Simulation Tool for the Analysis of Password Policies 13

Sharing Services

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 20 40 60 80 100 120 140 160 180 200

Attacks per Day

B
al

an
ce Individual

Services
Shared Services

Fig. 7 Comparison of balance, attack frequency, and users sharing services

problem. In order to address this, we offer a password pol-
icy simulation tool, PPST.

PPST is based on a model providing a detailed represen-
tation of password policies and users, as well as organiza-
tional parameters such as costs and services. Using this tool
we conduct several experiments.

While there are existent studies on human users and
passwords, our work is novel in several ways. We offer what
we believe to be the first comprehensive password policy
simulation tool. While some studies present only heuris-
tics or statistical information to policy-makers, we provide
a practical utility to enable policies to be studied before im-
plementation and deployment. No two organizations are ex-
actly alike, and different security situations require different
responses; therefore studies of one organization are only of
limited utility to another organization. Using PPST, an orga-
nization can generate data tailored to its own requirements.

In addition, our simulation model presents a valuable
new asset to security researchers. As illustrated in Section 5,
PPST allows experiments to be conducted in which one or
two variables are changed, and the rest are constant. This al-
lows researchers to study the effects of different factors on
password policy success in isolation. Doing this using actual
human users would be difficult, expensive, and slow.

PPST lets researchers and administrators analyze differ-
ent aspects of password policy design without needing to

experiment on human users. This may lead to the creation
of more solid password policies, and may facilitate further
research.

References

1. Bishop, M., V.Klein, D.: Improving system security via proactive
password checking. Computers and Security 14 14(3), 233–249
(1995)

2. Gehringer, E.F.: Choosing passwords: Security and human factors.
Technology and Society, 2002. (ISTAS’02) p. 369373 (2002)

3. Kuo, C., Romanosky, S., Cranor, L.F.: Human selection of
mnemonic phrase-based passwords. In: SOUPS ’06: Proceed-
ings of the second symposium on Usable privacy and security,
pp. 67–78. ACM Press, New York, NY, USA (2006). DOI
http://doi.acm.org/10.1145/1143120.1143129

4. Leyden, J.: Office workers give away passwords for a cheap
pen. The Register (2003). URL http://www.theregister.co.uk/-
2003/04/18/office workers give away passwords/

5. Proctor, R.W., Lien, M.C., Vu, K.P.L., Schultz, E.E., Salvendy, G.:
Improving computer security for authentication of users: Influence
of proactive password restrictions. Behavior Research Methods,
Instruments, & Computers 34(2), 163–169 (2002)

6. Robert M. Polstra, I.: A case study on how to manage the theft
of information. In: InfoSecCD ’05: Proceedings of the 2nd an-
nual conference on Information security curriculum development,
pp. 135–138. ACM Press, New York, NY, USA (2005). DOI
http://doi.acm.org/10.1145/1107622.1107653

7. SafeNet: 2004 annual password survey re-
sults. SafeNet (2005). URL http://www.safenet-
inc.com/Library/10/2004passwordsurveyresults.pdf

14 Richard Shay, Elisa Bertino

Number of Users

0

50000

100000

150000

200000

250000

300000

0 10 20 30 40 50 60 70 80 90 100

Number of Users

B
al

an
ce Individual Services

Shared Services

Fig. 8 Comparison of balance, number of users, and users sharing services

8. Sasse, M.A., Brostoff, S., Weirich, D.: Transforming the ’weakest
link’ — a human/computer interaction approach to usable and ef-
fective security. BT Technology Journal 19(3), 122–131 (2001).
DOI http://dx.doi.org/10.1023/A:1011902718709

9. Shannon, C.E.: Prediction and entropy of printed English. Bell
Systems Technical Journal 30, 50–64 (1951)

10. Shay, R., Bhargav-Spantzel, A., Bertino, E.: Password pol-
icy simulation and analysis. In: DIM ’07: Proceedings of
the 2007 ACM workshop on Digital identity management,
pp. 1–10. ACM, New York, NY, USA (2007). DOI
http://doi.acm.org/10.1145/1314403.1314405

11. Summers, W.C., Bosworth, E.: Password policy: the good, the bad,
and the ugly. In: WISICT ’04: Proceedings of the Winter Interna-
tional Symposium on Information and Communication Technolo-
gies, pp. 1–6. Trinity College Dublin (2004)

12. Vu, K.P.L., Proctor, R.W., Bhargav-Spantzel, A., Tai, B.L.B.,
Cook, J.: Improving password security and memorability to pro-
tect personal and organizational information. International Journal
of Human-Computer Studies (2007)

13. Yan, J.J.: A note on proactive password checking. In: NSPW ’01:
Proceedings of the 2001 workshop on New security paradigms,
pp. 127–135. ACM Press, New York, NY, USA (2001). DOI
http://doi.acm.org/10.1145/508171.508194

A Comprehensive Simulation Tool for the Analysis of Password Policies 15

forall Account A do
A.AssignNewPassword;

end
for DAY : 1 to Simulation.maxDays do

forall Account A do
if A.passwordHasExpired then

A.AssignNewPassword ;
end
else if A.isSuspectedCompromised then

A.CallHel pDesk ;
A.AssignNewPassword ;

end
else if A.passwordIsWritten then

if A.memCheck() then
A.passwordIsWritten ← false ;

end
end
else if
!A.memCheck()ANDrandom[0−1)< A.probForget
then

A.CallHel pDesk ;
A.AssignNewPassword ;

end
end
forall Account A do

if A.isWritten then
with probability A.compWrit, A.isCompromised ←
true ;

end
if A.bruteForceAttacksSucceed() then

A.isCompromised ← true ;
end

end
forall Service S do

S.isCompromised← false ;
end
forall Account A do

if A.isCompromised then
forall Service S : A.services do

S.isCompromised← true ;
end

end
end
calculateIncomeCost() ;

end
Algorithm 1: Model Algorithm

