
This paper is included in the Proceedings of the 
23rd USENIX Security Symposium.

August 20–22, 2014 • San Diego, CA

ISBN 978-1-931971-15-7

Open access to the Proceedings of  
the 23rd USENIX Security Symposium 

is sponsored by USENIX

Telepathwords: Preventing Weak Passwords  
by Reading Users’ Minds

Saranga Komanduri, Richard Shay, and Lorrie Faith Cranor, Carnegie Mellon University; 
Cormac Herley and Stuart Schechter, Microsoft Research

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/komanduri



USENIX Association  23rd USENIX Security Symposium 591

Telepathwords: preventing weak passwords by reading users’ minds

Saranga Komanduri, Richard Shay, Lorrie Faith Cranor
Carnegie Mellon University

Cormac Herley, Stuart Schechter
Microsoft Research

Abstract

To discourage the creation of predictable passwords, vul-
nerable to guessing attacks, we present Telepathwords.
As a user creates a password, Telepathwords makes real-
time predictions for the next character that user will type.
While the concept is simple, making accurate predictions
requires efficient algorithms to model users’ behavior
and to employ already-typed characters to predict subse-
quent ones. We first made the Telepathwords technology
available to the public in late 2013 and have since served
hundreds of thousands of user sessions.

We ran a human-subjects experiment to compare pass-
word policies that use Telepathwords to those that rely
on composition rules, comparing participants’ passwords
using two different password-evaluation algorithms. We
found that participants create far fewer weak passwords
using the Telepathwords-based policies than policies
based only on character composition. Participants using
Telepathwords were also more likely to report that the
password feedback was helpful.

1 Introduction
Users are often advised or required to choose passwords
that comply with certain policies. Passwords must be at
least eight characters long. They must contain charac-
ters from at least three out of four character categories
(uppercase characters, lowercase characters, digits, and
symbols). The password should not be based on a dictio-
nary word.

While rules for composing passwords often feel arbi-
trary and capricious, they respond to a problem of gen-
uine concern: left to their own devices, a significant frac-
tion of users will choose common passwords that attack-
ers may guess quickly. Composition rules were created
decades ago under the assumption that minimum-length
and character-set requirements would result in passwords
that were harder for attackers to guess. It is only in the

past few years that researchers have begun to test this hy-
pothesis (and found the evidence to support it far weaker
than assumed).

Indeed, password-composition rules feel arbitrary and
capricious because, quite simply, they often are. Users
can hardly be blamed if they question the credibility of
rules that reward those who choose the common pass-
word P@ssw0rd over those who enter a long randomly
generated string restricted to lowercase letters (e.g., to
facilitate typing on a touch-screen keyboard) or of pass-
word meters that offer irreconcilably different quality es-
timates for the same string [4]. If we are to prevent users
from selecting weak passwords, we must first improve
the technology used to identify weak choices, but also
overcome any skepticism caused the failure to clearly ex-
plain the need for the restrictions being imposed.

Our proposal, Telepathwords, is different from previ-
ous weak-password prevention schemes in that, as users
enter their proposed password, it shows its best predic-
tions for the next character they will type in real time (see
Figure 1). Telepathwords makes these predictions us-
ing knowledge of common behaviors users exhibit when
choosing passwords, common strings they frequently use
to construct passwords, and a general model of the user’s
language. Telepathwords presents users who enter weak
passwords with immediate and compelling evidence that
their intended password may be easier to guess than they
had previously assumed: a display of the characters they
are about to type.

We describe the design, implementation, human-
subjects testing, public deployment, and user response
to the Telepathwords system. The results of our se-
curity testing are particularly compelling. In a 2,560-
person Mechanical Turk study, passwords created us-
ing Telepathwords significantly outperformed (using
both entropy and guessing number metrics) those cre-
ated under length and character composition policies,
while remaining as memorable as passwords chosen
with the least stringent requirement (an eight-character
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Figure 1: The Telepathwords system, shown here as deployed in a publicly available password-weakness checker,
attempts to guess the next character of a users’ password before he or she types it.

minimum-length requirement). They matched or slightly
beat passwords created under a policy that checked
against a large cracking-dictionary, while at the same
time having more users state that they found the visual
feedback useful. The improvements in guessing resis-
tance were most pronounced for the most vulnerable part
of the distribution. That is, the weakest passwords cre-
ated using Telepathwords require orders of magnitude
more guesses than the weakest passwords created under
policies based on composition and length. This suggests
that Telepathwords can offer meaningful improvement in
defending against online guessing attacks; an improve-
ment that we hope can rebuild users’ confidence that the
constraints being imposed on them are indeed necessary.

2 Design and Implementation
We begin our discussion of the Telepathwords system by
describing the intended user experience, then discuss the
overall architecture and prediction algorithms required to
implement that experience. We also describe the feed-
back mechanisms we included to observe usage of the
system, as well as the limitations inherent to our imple-
mentation.

2.1 User Experience
Telepathwords enhances the text field into which users
type new passwords with two additional elements: a pre-
diction display and a feedback bar. Figure 1 illustrates
both, with the prediction display just to the right of the
typed password (P@ ) and the feedback bar immedi-
ately above it.

2.1.1 Prediction display
The prediction display shows the three characters (or
fewer) that Telepathwords predicts the user is most likely
to type next. As users are most likely to be familiar with
prediction from autocomplete, where the predictions rep-
resent a desirable mechanism to save labor, we needed to

emphasize that the characters telepathwords predict are
undesirable, as these choices are least likely to make the
password harder for attackers to guess. We thus display
predicted characters in block uppercase within the prohi-
bition symbol, or ‘universal no symbol’: a red circle with
a slash through it. We anticipated the symbol would be
familiar to users because it is standardized (ISO 3864-1,
though we did not strive to achieve full compliance in our
use), widely used in road signs, and pervasive in popular
culture such as t-shirts and movies.

To the right of the character we present a short expla-
nation of why that character was predicted. If we pre-
dicted the character because we detected the user typing
a repeating sequence of characters, we display ‘repeat-
ing’ followed by the character sequence being repeated.
If it is the next character of a common string, we present
the words ‘as in’ followed by that string, with the next
character boldfaced and underlined. For example, in Fig-
ure 1, the input of “P@$$” yields predictions: “W as in
password,” “I as in passion,” and “P as in passport.”

2.1.2 Feedback bar

In the feedback bar above the password-entry field, we
show either a checkmark or crossout symbol aligned di-
rectly above each of the characters already typed. A
checkmark means the character was not predicted by
Telepathwords, whereas a crossout indicates it was one
of the characters guessed. We also display a crossout if
the user types a common substitute for one of the pre-
dicted characters, such as an @ to avoid using an a. To
the right of these symbols we provide guidance as to how
many more hard-to-guess characters are recommended,
or would be required if Telepathwords were deployed
with a particular minimum hard-to-guess character re-
quirement. For example, Figure 1 shows one check and
three crossouts above the user input “P@$$” since each
of the last three characters was predicted based on the
characters that came before it.

2
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2.1.3 Special cases

In many applications, password-creation fields are con-
figured to hide the keys typed, replacing them with a
generic symbol (usually a solid circle or an asterisk).
When the password field is configured to hide the char-
acters that have been typed, we also replace those char-
acters with a solid circle in our prediction string. The
predicted characters are still shown.

When users type a common substitute for a predicted
character, such as a $ when an s is predicted, we display
the following message customized for the replacement:

Replacing a predictable letter with a key that looks
similar?

Attackers also know to substitute for s, so
it does little to improve your password.

We faced a particularly delicate conundrum in how to
handle predictions that completed profanities. An exam-
ination of the Rockyou leaked dataset reveals that pro-
fanities are not uncommon choices. Unlike applications
of prediction in search queries, we could not simply re-
move these predictions, as this would lead users to be-
lieve falsely that profane passwords were less weak than
they actually are. On the other hand, we could not dis-
play profanities to users who might have no intent of typ-
ing them, and who might be minors. We decided that
providing good security advice mandated that we predict
the next character, but we replace the rest of the profane
string with a string of solid circles in the explanation
of the prediction. We also display a pop-up message if
users complete a profanity, alerting them to the fact that
profanities are common in passwords and thus quite pre-
dictable. In crafting this message, we decided to embrace
the inevitability that some users might find humor in our
attempts to hide profanity.

Do you email your mother with that keyboard?

Many people include profanity in their pass-
words. Attackers know this. If you also use
profanity, you’ll just make your password easier for
attackers to guess.

2.2 Architecture
Telepathwords employs a client-server architecture, us-
ing JavaScript to present a front-end user interface us-
ing predictions asynchronously queried from a prediction
server. The constraints of client-side prediction would
not have allowed our prediction engine to use a 1.5GB
language corpus (see Section 2.3.1), which we hope to
grow in order to increase prediction quality and recog-
nize additional languages.

ResultSet
string passwordPrefix
Prediction[] predictions

Prediction
char charPredicted
Score likelihoodScore
Reason[] reasonsForPrediction

TrieNode
Score likelihoodScore
{char→TrieNode} children

WindowOfTrieNodes
WindowOfTrieNodes parent
string queryStr
Score penalty
{uint→TrieNode} nodeForEachSuffixLength

Figure 2: When the client queries the server with a pass-
word prefix, the Telepathwords prediction engine gener-
ates a result set containing a series of predictions, each
of which may have been predicted based on a number of
reasons (e.g., a dictionary match or a keyboard pattern).

Other weak-password-prevention systems, such as
common password meters, eschew server-side predic-
tions. One justification is security. However, the current
architecture of the web necessitates that whatever pass-
word the user eventually chooses will inevitably be sent
to the website’s servers in a plaintext-decryptable format.
To prevent the size of a prediction from revealing the pre-
fix sent to the server, we use a custom format to compress
and then pad responses to a common length. We route all
client-server communications over HTTPS.

A second reason to eschew server-side predictions is
performance. However, network latencies are relatively
small in comparison to users’ expectations of response
time, and can be made smaller by moving servers closer
to users and pre-fetching likely queries, as demonstrated
by the speed of auto-complete in web search. For exam-
ple, though our deployment used servers in a single ge-
ographic location to serve users worldwide, the median
latency between key-up and the rendering of a prediction
at the client was a fifth of a second (see Section 3).

One additional security risk we decided to take was to
maintain a cache of previously queried prefixes on the
server, whereas we would otherwise be able to delete all
evidence of a past request after serving a prediction. This
greatly increases the likelihood that when the nth char-
acter of a password arrives, the server will already have
done the work to process the first n−1 characters.

2.3 Prediction algorithms

When performing a prediction, we create a result set data
structure and populate it with a set of predictions, as il-
lustrated in Figure 2. Each prediction object represents a
possible next character of the password and a score that
indicates its estimated likelihood. There may be more
than one reason to predict a character, and so each pre-
diction object contains a set of reason objects. We pop-
ulate the result set by spawning a set of predictors, algo-
rithms which identify reasons for predicting a character

3
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TrieNode
Score likelihoodScore
{char→TrieNode} children

(a) Node data structure
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(b) A section of the trie
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(c) Descent to node par.

Figure 3: The trie data structure maps strings to likeli-
hood scores. Nodes (circles) with higher scores appear
to the left of lower-scoring siblings. Subfigure (c) illus-
trates a walk to the node storing the likelihood score for
string par.

will be typed next, add that reason to the prediction ob-
ject for that character, and increase the predictions score
as necessary.

When all the predictors have run, we rank the pre-
dictions and reasons. Before sending predictions to the
client, we discard predictions and reasons that are not
ranked high enough to be displayed to the user. We cache
the result set so that we can use it again for future queries
for this string, or extensions of this string.

Telepathwords currently contains predictors for com-
mon character sequences, keyboard movements, re-
peated strings, and interleaved strings.

2.3.1 Common character sequences

This predictor detects known prefixes of common char-
acter sequences from language models and databases of
common passwords, and predicts the remaining suffix.
The expected likelihood of the prediction increases with
the length and frequency with which the prefix was ob-
served when the model was built.

To search quickly through a large prefix of known
strings and their frequencies, we use the space-efficient
completion trie of Hsu and Ottaviano [10], as illustrated
in Figure 3. The trie used by Telepathwords contains
a 1.5GB English-language model derived from browser
search queries and a set of passwords that occurred five
times or more in the RockYou dataset. We removed all
capitalization and spaces from the language model be-
fore building the trie.

Completion tries are already used for auto-completion
and word-breaking applications, and these applications
require algorithms that adapt to common misspellings
and typos. For example, existing systems will walk a

a

b

c

b

c ca

a

b b

parentparent

WindowOfTrieNodes
WindowOfTrieNodes parent
Score penalty
TrieNode[] nodeForEachSuffix

Figure 4: Telepathwords uses a sliding window to walk
the trie for each suffix of the queried string. If the query
string is a single character (e.g., a), the sliding window
will contain only one node (left). A two-character string
(ab) will a sliding window that walks the trie to two dif-
ferent nodes (center). The query string abc yields a win-
dow that covers the suffixes c, bc, and the full suffix abc
(right). Adding one character to the query causes the
pointer to each node to descend to the child node for that
added character, and creates a new node in the window
by stepping from the root node to the added character.
Telepathwords may add a penalty to the window when
the path down the trie is different from the actual string
queried, such as if a window is created to represent a
transposition.

completion trie reversing the two characters at the suffix,
applying a penalty to account for the fact that transposi-
tions occur with much lower frequency than correctly se-
quenced characters. If the transposed prefix occurs with
sufficient frequency to overcome the penalty, the system
may continue to track that transposition and make pre-
dictions based on it.

Since Telepathwords uses tries to look for common
strings that may begin anywhere in the query (e.g.,
passw in the query notapassword), we maintain a win-
dow of completion-trie nodes for each possible starting
position, as illustrated in Figure 4. We track the trie
node for each possible suffix of the query. In addition,
we maintain two special windows: one that walks the
trie only when letters are typed and one that does so
only when digits are typed. These special windows help
to detect words broken up by non-alphabetic characters
(e.g., pa1234ssword) or numbers broken up by non-
digits (e.g., 12x34y678z9).

In contrast to other applications of tries, users choose
passwords with the deliberate goal of creating a string
that is hard to predict, leaving many more anomalies to
detect and work around than if divergences from known
strings occurred only by accident. We thus maintained a
large list of windows for each queried password prefix so
as to preserve nodes that might not immediately appear

4
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Figure 5: The common character sequence predictor
walks the ancestry chain to see if a completion that was
broken by an unpredicted character might still provide
the best guess for what happens next. For pa**w, the
third ancestor (pa) predicted the w in the fifth position,
and since there are no other likely predictions, predic-
tions using this ancestor reach the top.

valuable but might prove predictive as more characters
arrive.

We also built a table mapping common character sub-
stitutions, such as 3 for e, for s, and 0 for o, that are of-
ten provided in password-creation guidance (in our view,
misguidedly). If we detect a character that is often substi-
tute for another, we create a window using the character
we believe was substituted for and assign that window an
appropriate penalty.

To detect when users type distractor characters in
place of predicted characters, then carry on with the pre-
dicted string, we walk up the ancestry path of the current
prefix to look for predictions that may have been aban-
doned due to such behavior. For example, if the user has
typed the prefix pa**w, the algorithm will walk up from
pa**w to the ancestor prefix pa, determine that the pre-
diction of password for this prefix would have correctly
predicted the w in the fifth position, and may thus revive
that prediction to predict a o in the next position. See
Figure 5. Similarly, we use the standard error-correction
technique of detecting when a user has skipped a key and
typed the second character predicted in place of the next
character predicted.

The analysis of each password prefix of length n be-
gins with the analysis of its immediate prefix of length
n− 1. Thus, the cost of analysis grows at least linearly
with the length of the password. We maintain a main-
memory cache of recently analyzed query strings so that
results can be re-used when the suffixes of a previously-
queried string are queried.

Even under heavy load, the cache is small in compar-
ison to the 1.5GB language corpus. In our deployment,
the language corpus is stored in main memory. During
development, we found performance to be sufficiently
fast using a solid state drive (SSD) to store the corpus
and only mapping pages into main memory on demand.
In our deployment, we prefetched the full corpus into
DRAM as our servers did not have SSDs.

Figure 6: The password 3edc4, composed of vertical
columns on a QWERTY keyboard (3edc, 4rfv, etc.),
triggers the keyboard-movement predictor yielding r

as the top guess for the next character. The second pre-
diction guesses that the 4 is used in place of for in
forever, and the third prediction guesses that ecuador
is interleaved into every other character of the password.

Figure 7: The start of a repeating string triggers the rep-
etition predictor.

2.3.2 Keyboard movements

We developed this predictor to detect passwords com-
posed of a sequence of characters typed by moving one’s
finger over a sequence of adjacent keys.

We built a keyboard model that maps characters to x
and y coordinates that represent the column and row of
the key used to type each character on a keyboard. We
represent an n-character password prefix as a sequence
of n key positions, then generate a series of n−1 move-
ments from the first to the last character. We then work
backward from the end of the prefix to count the num-
ber of consecutive moves that are to adjacent keys and,
of those, the number of consecutive moves in the same
direction. We count movements that wrap from one end
of the keyboard (e.g., from top to bottom) as adjacent.

We have currently mapped only QWERTY keyboards,
but the implementation is generalized to support any
mapping of characters to coordinates.

2.3.3 Repeated strings

This predictor looks for instances of repeated strings in
password prefixes. For each possible suffix of length n, it
looks for repeated sequences of the suffix. The longer the
repeated sequence, the stronger the prediction. If the rep-
etitions are adjacent to each other (xyabcabcabc), then
the predictor guesses the next character in the repeated
sequence (or the first if the end has been reached). If the
suffix and its copy are not adjacent, then the early copy
and the intervening string are assumed to be in the pro-
cess of repeating. For example, in abcdefabc the suffix
abc is repeated twice and the predictor guesses that def
will come next.

5
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2.3.4 Interleaved strings

This predictor looks for passwords composed of two
predictable strings interleaved with each other, such as
p*a*s*s*w*o*r*d or ppaasswwoorrdd. It splits pass-
words to separate the odd- and even-indexed characters
and runs the other predictors (with interleaving-detection
turned off) on the substrings. If, for example, the next
character is at an even-index, it uses the even-index sub-
string to make the prediction, and also examines the pre-
dictability of the odd-index substring in evaluating the
likelihood that the query actually represents two inter-
leaved strings.

2.4 Telemetry
Our public deployment of Telepathwords maintains a
limited log of user behaviors, including page loading, re-
sizing, key-up events, and prediction rendering events.
Unless users explicitly opt-in to ‘donate’ their keystrokes
to science, we record the timing of keyup events, the
number of keys added or deleted, and the position of the
change, but not the actual keys typed. We also record
whether characters currently in the password field were
among those predicted, recording data similar to that
which is displayed in the feedback bar.

While we store logs online, the server is unable to read
their contents. At the start of a user session the client-
side JavaScript requests a one-time session-encryption
key from the server. The server generates the key, en-
crypts it with a public key, and then writes the encrypted
session key to the first entry of the log for the session.
It then sends the key to the client and maintains no fur-
ther record of it. The private key is not stored on any
publicly facing server. The client XORs the log data
stream with a bit stream generated by using AES in
counter mode with the Stanford Javascript Crypto Li-
brary (SJCL) [27]. We opted for this approach, inspired
by Kelsey and Schneier [23], because of its simplicity
and as concerns over confidentiality far outweighed that
of integrity. As logs are never read online, and no action
is taken with them but to store them, we do not know of
a scenario in which an adversary could learn the contents
of the logs by modifying them.

2.5 System Limitations
The current deployment of Telepathwords has some lim-
itations that are inherent to research prototypes. The lan-
guage corpus is US-centric and somewhat dated, and so
unlikely to pick up on words or phrases uncommon in the
United States or that have entered the common lexicon
since 2012. An ideal set of corpora would be interna-
tional and receive constant updates from the latest search
queries, news, and other topical sources.

Telepathwords cannot currently detect reversed char-
acter sequences (gfedcba in place of abcdefg) unless
that reversal is itself already common enough to be in
the language corpus (as it is for drowssap, for exam-
ple). One way to implement reversal detection would be
to reverse the more common strings in our language cor-
pus, assess a penalty for the reversal, and insert them into
our completion trie.

The privacy promises made by the current deployment
of Telepathwords prohibit analysis of passwords for any
purpose other than the issuing of predictions, and so the
language corpus, scoring rules, and known set of com-
mon password-creation behaviors do not grow over time.
Thus, if users flock to common behaviors in response
to Telepathwords (as they do in response to password-
composition rules) we may not be able to detect these
behaviors in the current deployment.

3 Deployment

Our first deployment of the Telepathwords technol-
ogy is a password-testing website, similar in pur-
pose to existing websites that offer to test the
‘strength’ of passwords [9, 16, 20], which is hosted at
https://telepathwords.research.microsoft.com. We took
great pains to avoid positioning the service as measur-
ing any form of ‘strength’ or ‘security’, as no system can
be certain that any user-chosen password is truly strong
or secure. There is no guarantee that a password that ap-
pears strong would not be predictable by an attacker with
better knowledge of how certain users construct pass-
words.

As with any publicly facing Internet service, we de-
ployed Telepathwords with some trepidation not know-
ing what usage levels to expect and not knowing what
factors we may have failed to anticipate when perform-
ing load-testing experiments. In our pre-deployment
throughput tests, Telepathwords processed 454,486 pass-
words in a database of breached Yahoo! Voices pass-
words in under 7 hours using 3 cores of a 3Ghz Xeon E5
1607 (roughly five passwords per core-second.)

We opened up our system to the public on December 5,
2013 and saw our highest usage rates shortly afterward,
as the technical press published articles about the release.

3.1 Data collected
We downloaded our encrypted logs to a researcher’s
workstation for decryption and analysis. We graph the
arrival rate of users to our service in Figure 8, which il-
lustrates the burst of traffic during initial release dissi-
pating over time. We are also able to observe the de-
lay experienced by users between the time they typed a
key and received a prediction for what the following key

6
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Figure 8: Sessions served per day by the Telepathwords
service shortly after release. (A Session is counted when
the Telepathwords page loads and the server receives a
request for a session ID and encryption key used for log-
ging.)
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Figure 9: The distribution of the delay between the
“keyup” and “render” events for all keystrokes during the
recording period. The median occurs at 208ms.

would be, graphed in Figure 9. The median delay was
200ms. A peak in the graph around 20ms is likely due to
fast rendering of predictions cached within the browser.

We are also able to use the logs to track how much
activity users perform during each user session. In Fig-
ure 10, we examine the distribution of number of keys
pressed per user session, seeing that some users appeared
to use the site to test multiple passwords.

4 Experimental Methodology

In addition to the deployment, we conducted a compar-
ative evaluation of Telepathwords and a number of ex-
isting password-composition policies via a two-part on-
line study using Amazon’s Mechanical Turk crowdsourc-
ing service. To facilitate comparisons with prior work,
much of our methdology mirrors that of a recent line
of research from Carnegie Mellon University, includ-
ing that of Kelley [12], Komanduri [13], Mazurek [15],
Shay [24, 25], Ur [28], and others.
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Figure 10: The number of keystrokes received per user
session provides insight into user engagement with the
site. The median is 15 and the mean is 21 keys pressed
per session.

Our experiment was approved by Carnegie Mellon
University’s institutional review board prior to the start
of our study.

4.1 Recruiting and Data Collection
We recruited participants from Amazon’s Mechanical
Turk by listing a Human Intelligence Task (HIT) in
which we offered 55 cents to “Take a 5-minute survey
with 70-cent bonus opportunity!” We required partici-
pants be 18 years of age and located in the United States.

We asked participants to imagine that their email ac-
count had been compromised and that they needed to cre-
ate a new password to replace it. We used a round-robin
algorithm to assign participants one of six password-
composition policies. As users typed their proposed
password, we provided real-time feedback indicating the
conditions that needed to be met for participants to sat-
isfy their assigned policy. Whereas prior CMU studies
checked compliance with password policies after partic-
ipants had submitted them, in this study we enabled the
submit button only after a participant had satisfied the
policy (and correctly retyped the password).

After participants submitted the password, we pre-
sented a survey with up to 24 questions to ask about their
experience creating the password, more general ques-
tions about their password habits, and their demograph-
ics. Following the survey we asked participants to recall
their passwords, giving them five attempts to do so. We
displayed their password to them if they could not recall
it within those five attempts. This concluded part one of
our study.

Two days later, we invited participants to return for
part two of our study, sending them an email via an in-
terface provided by Mechancial Turk. We offered 70
cents to return for this HIT, in which we asked partici-
pants to recall their passwords. Again, we allowed par-

7
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ticipants five attempts to provide the correct password.
We displayed participants’ passwords if they were unable
to succeed within five attempts, though we did not tell
them this a priori. We wanted participants to complete
the study whether or not they recalled their password, so
we provided them with a last-resort mechanism for re-
covering their passwords: a link, which would send an
email, which contained a link, which led to a webpage,
which displayed the correct password. We took this in-
tentionally circuitous approach, rather than simply show-
ing participants their passwords on request, to discourage
them from using the recovery mechanism without first
trying to recall their passwords. Outside the extra effort
for password recovery, we did not further penalize par-
ticipants for failing to recall their passwords; if we had,
and future participants learned about it, they might have
been more likely to store their passwords.

Finally, we asked participants to take an 18-question
survey asking about their password-recall process and
whether they had stored their passwords.

Except as noted, we focus our analysis on those par-
ticipants who finished the first part of our study. Our
analysis of dropout rates examines all participants who
begin the study, and our analysis of part two examines
only those participants who finished part two. We ex-
clude participants from part two if they did not complete
it within three days of the invitation.

4.2 Treatments
The only features of our study that varied between par-
ticipants were the assigned password-composition pol-
icy, whether the password field hid the characters typed
into it, and a few survey questions about policies specific
to certain treatments. Of the six password policies we
assigned to participants, two use a Telepathwords-based
policy and four use policies based on composition-rules
and (in one case) dictionary checks.

• telepath, telepath-v These two conditions em-
ployed a Telepathwords-based policy that required
users to provide a password with at least six charac-
ters that were not predicted by the system. The sys-
tem does not predict the first character, and so the
first character of each password always counted to-
ward the requirement. The two conditions differed
only in that passwords would be shown by default
as they were being typed in telepath-v and were hid-
den by default in telepath.

• basic8 This condition required passwords of at least
eight characters in length.

• 3class8 This condition also required passwords of at
least eight characters in length, adding the require-
ment that the password include three of four char-

Figure 11: The 3class8-d treatment on the experimental
website.

Figure 12: The telepath treatment on the experimental
website.

acter classes: uppercase letters, lowercase letters,
digits, and symbols. This policy mirrors the default
password policy for Microsoft Windows Active Di-
rectory.

• 3class12 This condition required passwords of at
least 12 characters in length from three of four char-
acter classes.

• 3class8-d This condition required passwords to in-
clude at least eight characters, from three of four
character classes, and required that the string of all
letters within the password not match any of the
roughly 3M words in the free Openwall cracking
dictionary [5].

We displayed the requirements that had not yet been
met directly above the password-entry field, as shown in
Figure 11. If the password had not yet met the length
requirement, we displayed that requirement. If a pass-
word met the length requirement, we displayed remain-
ing composition requirements, if any. If the password
met the length and composition requirements but failed a
dictionary check (for 3class8-d), we displayed the match
and indicated that the password must not contain the
matched word.

We displayed a checkbox that allowed participants to
show or hide the characters being typed. With the excep-
tion of telepath-v, the password was hidden by default.

8
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basic8 3class8 3class12 3class8-d telepath telepath-v
Participation

arrived at part one 476 475 472 469 476 476
finished part one 431/476 (91%) 440/475 (93%) 425/472 (90%) 402/469 (86%) 420/476 (88%) 442/476 (93%)

returned & finished part two in <3 days 270/431 (63%) 296/440 (67%) 277/425 (65%) 260/402 (65%) 267/420 (64%) 257/442 (58%)

Password Selection & Handling among part-two participants
did not store 172/270 (64%) 197/296 (67%) 168/277 (61%) 155/260 (60%) 168/267 (63%) 141/257 (55%)

did not re-use 221/270 (82%) 228/296 (77%) 226/277 (82%) 214/260 (82%) 229/267 (86%) 203/257 (79%)
did not store or re-use 135/270 (50%) 149/296 (50%) 140/277 (51%) 118/260 (45%) 138/267 (52%) 112/257 (44%)

Password Recall in 5 tries without reminder
during part one 423/431 (98%) 434/440 (99%) 414/425 (97%) 391/402 (97%) 407/420 (97%) 429/442 (97%)

all part-two participants 176/270 (65%) 213/296 (72%) 186/277 (67%) 193/260 (74%) 183/267 (69%) 178/257 (69%)
part two did not store 105/172 (61%) 131/197 (66%) 104/168 (62%) 103/155 (66%) 103/168 (61%) 86/141 (61%)

part two did not re-use 144/221 (65%) 163/228 (71%) 151/226 (67%) 155/214 (72%) 159/229 (69%) 143/203 (70%)
part two did not store or re-use 83/135 (61%) 97/149 (65%) 86/140 (61%) 73/118 (62%) 84/138 (61%) 69/112 (62%)

Table 1: We tally the set of participants who began part one of our study, finished it, and who returned for part two.
We measure recall rates for part one (shortly after password selection) and part two. We break down part-two recall
rates to factor out participants who reported re-using passwords they already knew or storing their passwords.

5 Experimental Results and Analysis

The application of multiple statistical tests increases the
chance of producing a Type I error, finding a significant
difference where none exists. To compensate for this, we
use a standard two-step process. First, we only perform
pairwise tests if an omnibus test is significant. We use
the Kruskal-Wallis omnibus test (KW) for quantitative
data and the χ2 test for categorical data. Second, we cor-
rect all pairwise tests using the Holm-Bonferroni method
(HC). We use the Mann-Whitney U for quantitative pair-
wise comparisons and Fisher’s Exact Test and the χ2 test
for categorical pairwise comparisons.

We performed our experiment in February 2014. We
recruited 2,844 workers to accept our HIT for part one
of our study. Of these, 2,560 finished, received payment,
and received invitations to return two days later. A total
of 1,627 participants (64%) returned for the second HIT
within three days of when we sent their invitation. Par-
ticipants’ demographics reflected a typical population of
workers on Mechanical Turk, with a median reported age
of 27, nearly 60% reporting as male, and 44% reporting
having at least a bachelor’s degree.

We show the progress of participants through our
study in Table 1. We removed from our analysis five par-
ticipants who created more than one password by using
the back button or reloading the password-creation page.

The condition with the highest dropout rate was
3class8-d, while the lowest dropout rate was telepath-v.
Table 2 shows the dropout rates for each condition. It
also gives the test’s p-value for the null hypothesis (that
the difference between dropout rates was unaffected by
condition) for each pair of conditions. For example, at
p= 0.01 (resp. p= 0.007) the difference in dropout rates
between 3class8-d and 3class8 (resp. telepath-v) is sig-

Fisher’s Exact Test p
(Holm-Bonferroni corrected)

Treatment Part one dropout te
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-v

3class8-d 67/469 14% 1.000 .458 .318 .010 .007
telepath 56/476 12% 1.000 1.000 .318 .255
3class12 47/472 10% 1.000 1.000 1.000
basic8 45/476 9% 1.000 1.000
3class8 35/475 7% 1.000
telepath-v 34/476 7%

Omnibus χ2
5 =19.373, p=0.002

Table 2: The fraction of participants who dropped out
during part one, with corrected pairwise comparisons of
all treatment groups.

nificant. For all of the other condition pairs the hypoth-
esis that condition had no effect on dropout rate is not
ruled out. Note that the table has a triangular structure
since we list the result of each pairwise test only once,
and this same format is used for our other categorical
tests (i.e. Tables 3, 4, 5, 6 and 7).

The median time spent to create a password was 32
seconds for participants in basic8, 43 for 3class8, 53 for
both 3class12 and 3class8-d, 85 for telepath-v, and 96
for telepath. We anticipated participants using Telepath-
words might spend more time, as these treatments in-
cluded three lines of instructions not present in other
treatments (see Figure 12) and their novelty may have
led to more exploration.

9
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Figure 13: “Creating my password was difficult” and
“Creating my password was annoying.”

5.1 Recall

We provide recall rates for part one of the study for ref-
erence only, as just minutes had passed since participants
had chosen their passwords. In the second section of Ta-
ble 1, we see that 61.5% of participants indicated that
they had not stored their password and that we had not
detected them pasting or auto-filling a password into the
recall field. Differences between treatment groups were
not statistically significant (χ2

5 =9.231, p=0.1).
We looked at the number of part two recall attempts

by the subset of participants who did not store their pass-
words, did not use the reminder feature, and did not
re-use a previous password. Of these 502 participants,
79.3% entered the password on the first attempt, and
14.5% entered it on the second attempt. While the om-
nibus test shows a significant difference between condi-
tions for taking more than one attempt (χ2

5 =13.943, p
=0.016), the pairwise tests showed no significant differ-
ences. Among the 398 of these participants who en-
tered their password correctly on the first attempt, the
median password-entry time was 14.8 seconds; this did
not vary significantly by condition (KW χ2

5 =4.705, p
=0.453). Looking at the 1159 participants who did not
use the reminder, 80.9% entered the password correctly
on the first try. This differed by condition (χ2

5 =12.604, p
=0.027), but no pairwise test was significant.

5.2 Participant Sentiment

In addition to recording participant behavior, we asked
participants about their experience. We asked all partic-
ipants whether they felt that creating their password was
difficult or annoying, with results in Figure 13. We show
the pairwise comparisons across conditions for difficulty
in Table 3 and annoyance in Table 4.

The three policies that tested participants’ passwords
against lists of common passwords (the Telepathwords
conditions and 3class8-d) had a greater proportion of par-
ticipants who were annoyed than those using the purely
composition-based policies. The differences with the
simplest policies were significant, as shown in Table 4.

Fisher’s Exact Test p
(Holm-Bonferroni corrected)

Treatment Creation difficult te
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telepath 163/420 39% .374 .078 <.001 <.001 <.001
telepath-v 158/442 36% .374 <.001 <.001 <.001
3class8-d 123/402 31% .006 <.001 <.001
3class12 87/425 20% .374 .005
3class8 73/440 17% .209
basic8 51/431 12%

Omnibus χ2
5 =135.199, p<.001

Table 3: The fraction of participants in each treatment
who agreed that it was difficult to create a password dur-
ing the experiment.

Fisher’s Exact Test p
(Holm-Bonferroni corrected)

Treatment Creation annoying 3c
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telepath 175/420 42% 1.000 1.000 .034 .002 <.001
3class8-d 165/402 41% 1.000 .052 .004 <.001
telepath-v 175/442 40% .117 .013 <.001
3class12 136/425 32% 1.000 .005
3class8 129/440 29% .052
basic8 92/431 21%

Omnibus χ2
5 =61.805, p<.001

Table 4: The fraction of participants in each treatment
who agreed that it was annoying to create the password
during the experiment.

Figure 14: “When compared to the password I use for
my primary email account, the password I created for
this study was:”.

We also asked participants whether they believed their
study-created password to be more, less, or just as secure
as their primary email password. The results are in Fig-
ure 14. Belief that the study passwords were more secure
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Fisher’s Exact Test p
(Holm-Bonferroni corrected)
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3class12 180/425 42% 1.000 .329 .134 <.001 <.001
telepath 172/420 41% .552 .309 <.001 <.001
telepath-v 161/442 36% 1.000 .013 <.001
3class8-d 139/402 35% .075 <.001
3class8 116/440 26% .027
basic8 78/431 18%

Omnibus χ2
5 =83.62, p<.001

Table 5: The fraction of participants who selected “More
secure” in response to “When compared to the password
I use for my primary email account, the password I cre-
ated for this study was:”.

Figure 15: “The visual feedback I received gave me
insight into the quality of my password” and “The vi-
sual feedback that was displayed helped me to create a
stronger password that I would have otherwise.”

ranged from 18.1% for basic8 to 42.4% for 3class12, and
significant differences are in Table 5.

We displayed visual feedback in all conditions to help
participants comply with their assigned policy. We asked
participants if they believed the feedback gave them in-
sight into their passwords and if it helped them to create
better passwords. We show their responses in Figure 15
paired with significance tests in Tables 6 and 7.

The Telepathwords treatments, along with 3class12,
had the greatest proportion of participants who believed
the feedback helped them create a stronger password.
A significantly larger portion of participants in the two
Telepathwords conditions agreed that the feedback pro-
vided more insight than the other treatments—including
the dictionary-based feedback in 3class8-d. This is tem-
pered of course by the higher number who found pass-
word creation difficult or annoying with the tool. We see
this as a hopeful sign that Telepathwords can help im-
prove the credibility of technology designed to prevent
users from choosing weak passwords.

Fisher’s Exact Test p
(Holm-Bonferroni corrected)
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telepath 315/420 75% 1.000 <.001 <.001 <.001 <.001
telepath-v 331/442 75% <.001 <.001 <.001 <.001
3class12 253/425 60% .873 .678 <.001
3class8-d 224/402 56% 1.000 <.001
3class8 241/440 55% <.001
basic8 146/431 34%

Omnibus χ2
5 =208.104, p<.001

Table 6: Agreement with “The visual feedback I received
gave me insight into the quality of my password.”

Fisher’s Exact Test p
(Holm-Bonferroni corrected)
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telepath 231/420 55% 1.000 1.000 .029 .001 <.001
telepath-v 241/442 55% 1.000 .029 .001 <.001
3class12 231/425 54% .033 .001 <.001
3class8-d 180/402 45% 1.000 <.001
3class8 183/440 42% <.001
basic8 77/431 18%

Omnibus χ2
5 =178.62, p<.001

Table 7: Agreement with “The visual feedback that was
displayed helped me to create a stronger password that I
would have otherwise.”

5.3 Security Results

In Table 8 we present statistics summarizing the com-
position of passwords created under each policy, and se-
curity scores calculated by three metrics. We focus our
analysis on the passwords identified to be weakest as an
attacker is most likely to try these first. Dictionary at-
tacks to obtain beachheads into organizations succeed
when the first account is breached. Thus, improving the
security of the weakest password in an organization by
a small amount is far more likely to prevent an attacker
from obtaining a beachhead than a large improvement to
the average password would. This is particularly true for
an online attack where a limited number of guesses per
account can be tried.

We did not encounter any repeat passwords in our
sample, so we cannot use frequency as a metric. Rather,
the first metric we apply is an entropy calculation gener-
ated by the open-source zxcvbn password meter [30]. Its
advantages are that it is publicly available, open-source,
and already relied on by large-scale systems, including
DropBox. Its primary disadvantage is that it was de-
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signed to meet the constraints required for deployment
as a client-side password meter; it needed to be small
enough to download quickly and efficient enough to run
in JavaScript. As such, it cannot perform the same level
of computational analysis or apply the same body of
knowledge as a tool designed for guessing.

The second metric we apply is a guess-number calcu-
lator developed by Saranga Komanduri, which first ap-
peared in Kelley et al. [12, 25]. We call this metric
Weir+ because it builds on the guessing approach of Weir
et al. [29]. Its advantages are that it is designed with
the explicit goal of measuring the number of guesses re-
quired to crack a password, can be trained to target spe-
cific password policies, and represents the state of the
art in measuring strength against a guessing attack. The
disadvantages of Weir+ include that it is available only
by contacting the author, written in multiple program-
ming languages, and has not been made easy to config-
ure. Further, its results may vary based on the size and
quality of the training data. In order to create a large
training set of passwords that comply with the Telepath-
words policies, we used the 133,109 passwords in the
Yahoo! Voices breach data set that received a score of
6 hard-to-guess characters or more from Telepathwords,
which represents 29% of the 453,488 passwords revealed
by that breach.

Our final metric is the score provided by the current
version of Telepathwords itself—the number of hard-to-
guess characters. We find this informative for comparing
treatments other than those that employ Telepathwords.
The scores for participants in telepath and telepath-v
are provided exclusively for completeness, as partici-
pants who were able to generate a password that met the
Telepathwords policy will score well by default (though
we note that two participants received a 5 due to a change
to predictions from the version deployed during the ex-
periment and the version used to calculate scores).

Regardless of metric, the telepath and telepath-v pass-
words do substantially better than all other conditions,
with the possible exception of 3class8-d. We present the
scores for each metric in Table 8.

For the zxcvbn entropy measure, we show in Fig-
ure 16 that telepath and telepath-v passwords outperform
those from all other conditions for the weakest password
in each condition and the weakest 2.5%, 5%, and 10%
of passwords. Thus, Telepathwords did the best job of
preventing weak passwords. Only when we consider the
median entropy do 3class12 and 3class8-d become com-
petitive. The improvement with respect to 3class8 and
basic8 is enormous.

Figure 17 illustrates the Weir+ measurements. Again
the two Telepathwords conditions show enormous im-
provement over basic8 and 3class8. They show con-
siderable improvement over 3class12 on minimum en-
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Figure 16: We sort the passwords in each condition
by zxcvbn-entropy scores, from lowest to highest, and
present the fraction of passwords with scores at or be-
low a given value. Only passwords with entropy scores
of 20 or less are shown in order to highlight the weakest
passwords in each condition.
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Figure 17: We sort the passwords in each condition by
their Weir+ guess number, from lowest to highest, and
present the fraction of passwords that with guess counts
at or below a given number of guesses.

tropy, and on entropy of the weakest 2.5%, 5%, and 10%.
The 3class8-d condition is roughly comparable to the
two Telepathwords conditions, except when we consider
minimum entropy, where it does considerably worse.

To substantiate further the impact of using Telepath-
words and dictionary-based approaches, we present in
Table 9 the weakest 2.5% of passwords according to
each metric. For example, the weakest 2.5% under
3class8 contain such obvious and easily-guessed choices
as Password1 and P@5sword, which compare unfavor-
ably with those in either of the Telepathwords conditions
of 3class8-d.
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Mean characters per class zxcvbn Entropy Telepathwords score Weir+ score
N Upper Lower Digit Symbol Min 2.5% 5% 10% Med Min 2.5% 5% 10% Med Min 2.5% 5% 10%

3class12 425 1.7 8.0 3.2 0.9 6.8 14.8 17.0 20.4 33.4 2 3 3 4 7 6.4 22.4 27.8 31.5
3class8-d 402 1.5 6.6 2.6 0.8 11.0 15.6 17.8 22.1 32.7 1 3 3 3 6 16.0 26.6 29.4 33.6
3class8 438 1.6 6.6 2.5 0.6 3.0 11.7 14.1 16.1 29.1 1 2 2 3 6 0.0 14.4 17.4 24.9
basic8 429 1.0 7.9 2.4 0.4 0.0 9.5 12.6 15.4 27.9 1 2 2 3 6 1.0 13.0 17.7 22.4
telepath 420 1.0 7.0 2.5 0.6 9.7 17.9 19.7 22.4 32.0 5 6 6 6 7 21.0 26.1 29.3 33.0
telepath-v 441 1.1 7.0 2.7 0.5 13.0 18.4 20.4 22.4 32.8 6 6 6 6 7 19.9 27.4 29.9 33.2

Table 8: Security metrics of passwords created by participants. We show minimum and median zxcvbn and Telepath-
words scores, along with percentiles selected to indicate the vulnerability of each condition to early guessing. We
report Weir+ scores as the log2 of their guess numbers for comparison with entropy scores. We do not show median
Weir+ scores as only basic8 reached 50% cracked in our analysis.

zxcvbn

basic8 3class8 3class12 3class8-d telepath telepath-v
password Password1 Thispassword1 1qaz2wsx! thisisapassword guessmypassw0rd
12345678 P@5sword Password@123 123456789jI 2014welcome Mary3476

P@55w0rd EL1Z@B3TH Qwerty12345@ Zaq12wsx jim1965 altoids123
PASSWORD1234 Password8 Passwordneeds1 @bs0lute $hrod3 almay123

passwordme Mypassword1 !PaSsWoRd123 A11iance 1024scott the1step!
sunshine Samantha1 StephenASmith1 Beer4y0u mothertrucker snoopy1969!

Youknow123 Whatever1 1NewP@ssword Hawk3y3s burkeds kylemonkey1986
brittany Whoi1234 Chief$123456 G0dZ1Ll4 pi$$a123 Scr3wdr1v3r123

drowssap My2password MonKeY12345! @SunSh1n3 12noraa sion12
Washington1 Shelby1234 Asdfghjkl123 Cut13p13 c@reful951 lmi2014

1987camaros
Weir+

password Password1 Asdfghjkl123 Pokemon91 1024scott iamabeliever
12345678 Password8 Password@123 Redtruck1 jim1965 feefifofum
sunshine Rainbow3 bulldog*1234 Nackson1 cesar5000 motuwethfr
brittany Robert07 Jp1234567890 ZaqXsw12 mi1213 snorelax

qwertyuiop Cougars1 Johnny#12345 H1r12345 mothertrucker broseph
drowssap Andrew24 Strawberry246 Monkeydude1 thisisapassword cats59
trinity1 Marcus12 Guadalajara1 Plascencia1 imalittleteapot peacaboo1

sugarbaby Liverpool15 123Cheetos!! Caedus12 awdxsz almay123
deeznuts Bahamut1 Abc123456789! Godalmighty1 chieri altoids123

monkey69 Abby1234 Qwerty12345@ Yaniku13 coffeecup123 jacran1
sion12

Telepathwords
frenchfry Password1 MountainDew1 BearBear1

qwertyuiop EL1Z@B3TH P00lsidebars B4sk3r*v1ll3
password P@5sword Elephants.19 Redtruck1
p09op09o Robert07 Password@123 A11iance

P@55w0rd Samantha1 cRAYON123456 Ilove!myself
PASSWORD1234 Whatever1 MonKeY12345! Zaq12wsx

R0ckstar! Qwaszx12 Abc123456789! Cut13p13
Monkeys21 !PaSsWoRd123 Monkeydude1
Scoobydoo2 Asdfghjkl123 ZaqXsw12

Qwerty12345@ Galvestontx1

Table 9: The weakest 2.5% of passwords as scored by each metric (weakest at top). For the Telepathwords metric,
the weakest passwords in the telepathwords conditions are not shown because there are too many passwords at the
minimum score threshold to present here.

5.4 Limitations

All artificial experiments have limitations and ours was
no exception. We make note of two such limitations.

Our study used a role-playing scenario to encourage
users to create passwords. Participants playing roles may

choose weaker passwords than they would for an ac-
count they value. They might also choose stronger pass-
words than they would for an account they didn’t value.
Schechter et al. [22] have shown that participants in se-
curity studies behave differently when the laboratory en-
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vironment frees them from risk, and Fahl et al. [7] have
shown a specific effect for choice of passwords. While
limiting the interpretations of absolute scores, so long
as these effects impact conditions equally, the method-
ology still facilitates cross-condition comparisons—the
primary focus of the experiment. In fact, if our goal is
to study the ability of technology to help unmotivated
users choose better passwords, having participants who
are less motivated than they would be in real-world con-
ditions may be beneficial.

We measured recall over a short period of two to five
days in a context where participants entered their pass-
word a few minutes after choosing it. In contexts in
which users do not re-enter their passwords immediately
after creating them, or in which they do not return for
more than five days, they may be more likely to forget
them. In contexts where users use their passwords more
frequently after creating them, they may be less likely to
forget them within two to five days. Had we selected dif-
ferent return periods we might have been more likely to
see differences in recall rates.

6 Related Work

While some security practitioners simply hope that pass-
words, and their associated weaknesses, can be wished
away, Bonneau et al. [3] have argued that passwords are
not going away anytime soon. Password-composition
rules date back at least to 1979, when Morris and Thomp-
son reported on the predictability of the passwords used
by users on their Unix systems; they proposed that pass-
words longer than four characters, or purely alphabetic
passwords longer than five characters, will be “very safe
indeed” [19]. Bonneau analyzed nearly 70 million pass-
words in 2012, 33 years later, to measure the impact of
a six-character minimum requirement compared with no
requirement [2]. He found that it made almost no differ-
ence in security. In a study of the distribution of pass-
word policies, Florêncio and Herley found that usability
imperatives appeared to play at least as large a role as
security among the 75 websites examined [8].

Early studies of proactive password-quality verifica-
tion mechanisms includes the work of Spafford [26], who
suggests an efficient method for storing a dictionary for
checking. Bishop et al., in 1995, suggested checking
passwords for dictionary entries, user information, and
other common patterns at password creation [1]. They
also provided some statistics on these patterns in pass-
words. Weir et al. also examined password-composition
rules by looking at samples of passwords [29]. These
works did not look at passwords created under varying
rules, however.

Microsoft Windows has enforced password-
composition rules at least as far back as 2000, with

the default requiring at least 8 characters from three
of four character classes: uppercase, lowercase, digits,
and others [17, 18]. One problem with the Windows
implementation is that when Windows rejects a user’s
proposed password, it does not provide a list of the rules
being enforced or identify specifically which rules the
password is violating.

Many websites offer password meters that provide
feedback on the strength of passwords as users type
them. Based on a survey of the top 100 websites in 2012,
most password meters use simple password-composition
rules such as length and number of non-lowercase char-
acters to determine when a password is good enough to
reach the next level on the meter [28]. Egelman et al. [6]
examined whether the presence of a password meter
made any appreciable difference in password strength.
They found that the meter made a difference when users
were changing their password for an existing impor-
tant account; but the meter had little effect when users
were registering a new password for a low-importance
account. Ur et al. also studied the effect of password-
strength meters on password-creation. They found that
when users became frustrated and lost confidence in the
meter, more weak passwords appeared [28]. Very re-
cently, de Carné de Carnavalet and Mannan [4] examined
several password meters in use at popular websites and
found gross inconsistencies, with the same password reg-
istering very different strength across different meters.
Collectively, these findings are in line with our concern
that password policies and meters may harm credibility
and lead users to put less effort into choosing a good
password.

One exception to the reliance on composition rules in
password meters is zxcvbn, an open-source meter devel-
oped and used by DropBox, which uses a small language
corpus to calculate entropy estimates in real time [30].
Designed to run entirely in the users’ browser, it is writ-
ten in JavaScript and compresses down to 320KB. While
zxcvbn provides a much-needed improvement in the
credibility of its strength estimates when compared to ap-
proaches relying solely on composition rules, this cred-
ibility is unlikely to be observed by users. In fact, its
perceived credibility may suffer if users, who have been
told that adding characters increases password strength,
see scores decrease when certain characters are added.
For example, when typing iatemylunch, the strength
estimate decreases from the second-best score (3) to the
worst score (1) when the final character is added. Even if
users find zxcvbn’s strength estimates credible, they are
unlikely to understand the underlying entropy-estimation
mechanism and thus be unsure how to improve their
scores. The advice zxcvbn offers, such as using inside
jokes and unusual use of uppercase, could potentially
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lead users to cluster around common strategies, yielding
a set of new common passwords for attackers to guess.

Schechter et al. [21] offered another alternative to
password-composition rules, suggesting a system that
prevents users from choosing passwords popular among
a large set of users. Another approach that seeks to limit
dangerously common passwords was proposed by Mal-
one and Maher [14]. These approaches, however, are
most appropriate for systems with tens of millions of
users, in which uniqueness is a strong indicator that a
password is hard to guess. Relatively weak passwords
may be unique among hundreds or thousands of user ac-
counts.

The human-subjects experiment we perform in this
work seeks to replicate the methodology used in prior
password studies. Many of our choices in recruiting,
question design, and the timing of the invitation to part
two of the study reflect a desire to facilitate comparison
with prior work. This includes the work of Komanduri et
al. [13] and Kelley et al. [12], who used similar study
designs to perform comparative analyses of password-
composition rules. These prior studies found that in-
creasing length requirements in passwords generally led
to more usable passwords that were also less likely to be
identified as weak by their guessing algorithm [13, 12].
Most recently, Shay et al. studied password-composition
policies requiring longer passwords, finding the best per-
formance came from mixing a 12-character minimum
with a requirement of three character sets [25]. One key
difference between our work and most prior studies is
that all of our treatments provided feedback to users as
they typed their passwords. With the exception of Ur
et al.’s examination of meters providing optional guid-
ance [28], all of these prior studies from Carnegie Mellon
required participants to submit passwords before testing
for, or providing feedback on, compliance with a policy.

A valuable use case for Telepathwords-based policies,
which do not place any character-set requirements on
passwords, is the affordance of creating all-lowercase
passwords for easy entry on a touch screen. Jakobs-
son and Akavipat proposed a scheme for mobile devices
that uses easily-typed passwords with auto-completion
for easier password entry [11].

Fahl et al. [7] pointed out limitations in studies that
use role-playing to generate passwords, as we do in this
study. They find significant differences between pass-
words generated in these scenarios and real passwords.
Komanduri et al. found that users created stronger pass-
words when asked to role-play, compared to when asked
simply to create a password for a study [13]. Mazurek et
al. used a methodology similar to ours and compared
their results to genuine user passwords in a univer-
sity [15]. They found that while the experimental pass-

words were slightly weaker than the genuine passwords,
they were similar in many other respects.

7 Conclusion

Telepathwords provides users with significantly more in-
sight into the quality of their passwords than all other
approaches, and results in passwords stronger than ap-
proaches that do not use dictionaries. For example, the
metrics suggest that to crack 1% of Telepathwords pass-
words, an attacker needs to make more than a factor of a
thousand more guesses per password than for passwords
created under the default password policy employed by
Microsoft Windows Active Directory. While a higher
number of users found password creation difficult or an-
noying using the tool, the security improvements did not
come at any measurable impact to memorability.
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